la型超新星と星周物質

長尾崇史(D1, 京都大学)

「木曽広視野サーベイと京都3.8m即時分光によるタイムドメイン天文学の推進」研究会 2017/2/20-22@京都大学

(注)この写真(Cerro el plomo @Chile)は本研究とは一切関連がありません。ただ綺麗なので使ってます。

Tomo-e Gozen 超新星サーベイで できる2つのサイエンス例

(1) 星周ダストからの赤外線エコー:la型超新星の親星問題 T. Nagao, K. Maeda & M. Yamanaka 2017

(2) 星周ダストからの可視散乱光:la型超新星の特異な減光 T. Nagao, K. Maeda & T. Nozawa 2016

(1) 星周ダストからの赤外線エコー: la型超新星の親星問題

T. Nagao, K. Maeda & M. Yamanaka 2017

la型超新星とは?

9000

la型超新星とは?

スペクトル分類

2/20

la型超新星の二つの親星モデル

Single Degenerate モデル

伴星は主系列星、赤色巨星

•

•

- 伴星からの質量輸送で火がつく
- 比較的ダスティーな環境で爆発 ・比較的クリーンな環境で爆発

© ESA and Justyn Maund (QUB)

Double Degenerate モデル

- ・伴星も白色矮星
- ・
 白色矮星同士の合体で火がつく

overluminous la型超新星 2012dn

:近赤外域に超過が観測

Yamanaka+2016

(注)超新星2009dcの光度曲線は0.5等だけ暗くしている

入射光: 典型的なla型超新星のテンプ レート(Hsiao et al. 2007)

星周ダストの分布

円盤モデル

ジェットモデル

ダスト温度の時間進化

8/20

星周ダストからの赤外線エコー

ベストフィットパラメータ

10/20

(2) 星周ダストからの可視散乱光: la型超新星の特異な減光 T. Nagao, K. Maeda & T. Nozawa 2016

la型超新星は特異な減光を示す

Rvの値はどのように決まるのか?

 $f_{\nu 1} = f_{\nu 0} \exp(-\kappa_{\text{ext}}(\nu)\rho L)$

 $A(\nu) \propto \log(f_{\nu 1}/f_{\nu 0}) \propto \kappa_{\rm ext}(\nu)\rho L$

$$R_V = \frac{A_V}{A_B - A_V} = \frac{1}{\frac{\kappa_{\text{ext}}(B)}{\kappa_{\text{ext}}(V)} - 1}$$

銀河系のダストと異なるダスト? 12/20

星周ダストによる多重散乱で小さなRv

定常光源、一様密度のダスト

波長が短い光ほど散乱回数が多く、走る距離が伸び、 吸収される確率が上がる→より赤くなる(小さなRv)

13/20

これらの議論はダストの詳細に依らず、実現されるのか? → 様々なダストで計算

様々な光学特性を持つダストでの計算

以下の3つのパラメータを選んだ

$$r\kappa_{\text{ext}} = \frac{\kappa_{\text{ext}}(B)}{\kappa_{\text{ext}}(V)}$$
 $r\omega = \frac{\omega(B)}{\omega(V)}$ $\omega(B)$

κ: 減光係数、ω: アルベド

 $r \kappa = (1.2, 1.25, 1.3, 1.35, 1.4)$ $r \omega = (0.9, 0.925, 0.95, 0.975, 1.0, 1.025, 1.05)$ $\omega (B) = (0.6, 0.7)$ 5

in total, 70 dust models 14/20

方法:モンテカルロ輻射輸送計算

結果:Rvのr*ĸ*,r*w* and *w*(B)への依 存性

どのようなダストが大きなr κ 、小さ $\alpha r \omega \varepsilon$ 持つか?

色々なダストモデルでのrκ、rωを計算した

この仮説を検証するには

Tomo-e Gozen超新星サーベイで 予想される候補天体の数

研究(1): 星周ダストからの赤外線エコー: 親星問題

◆ overluminous SNe la(M_peak ~ -20等)の発見個数

•

٠

-18等がサーベイの限界等級(19等)になる距離:~250Mpc

→ 2000÷100÷4 = ~5個/年(20Mpcにnormal laが1個と仮定)

- ・ このうち、近赤外でエコーをフォローアップ観測できるものの数
 近赤外で-17等まで観測したい+かなた望遠鏡(18.5等 for 600秒, Jバンド)
 ~150Mpcなら観測可能 → ~1個/年(3.8m→~2等深い→発見したすべて観測できる)
- たくさんoverluminous を見つけて欲しい→広く浅く観測して欲しい:今の仕様が良い
- 研究(2): 星周ダストからの可視散乱光: 特異な減光
- ◆ SNe la(M_peak ~ -19等)の発見個数:~120個/年
- ◆ 可視のフォローアップ:可視で-16等まで観測したい
- → かなた望遠鏡(~20等(B), ~21等(V))なので、発見したすべて観測できる
- ◆ 爆発後~5日程度で観測したい→今の仕様が良い

まとめ

・研究(1):赤外線エコー

- ◆ Overluminous SN la 2012dn の赤外線超過を星周ダスト円盤からの赤外線エ コーで説明できることを明らかにした
- ◆ Tomo-e Gozen超新星サーベイでは、年間に~5個程度候補天体が見つかる
- ◆ かなた望遠鏡ではこのうちの~1個、3.8m望遠鏡では~5個程度、今回のような研究を行うことができる
- ・研究(2):特異な減光
 - ◆ 粒子サイズの小さなシリケイトや炭素ダストなら、多重散乱の効果で実効的にla 型超新星で観測されている特異な減光を説明できることを示した
 - ◆ 実際に特異な減光の起源が多重散乱であるかどうか確かめるには爆発直後(< ~ -17 等)の時の減光を観測すれば良い

20/20

- ◆ Tomo-e Gozen超新星サーベイでは、年間に~120個程度候補天体が見つかる
- ◆ かなた望遠鏡を使えば、このすべての天体で爆発直後の観測ができる