Tomo-e GozenとMUレーダーを用いた 超微光流星の同時観測 Optical & Radar Observations of ultra-faint Meteors

MARSING 阿部新助(日本大学理工学部航空宇宙工学科) Shinsuke ABE (Nihon University, Dept. Aerospace Eng.)

Collaborators

大澤 亮, 酒向 重行 (東京大学) 渡部 潤一 (NAOJ), 中村 卓司 (NIPR), 橋口 浩之 (京大RISH) Johan Kero (Swedish Institute of Space Physics) 弘田 旭 (日本大学)

木曽広視野サーベイと京都3.8m即時分光によるタイムドメイン天文学の推進 20170221 @ 京都大学

MU Radar

Schmidt telescope

京都大学 生存圏研究所 信楽MUレーダー Middle and Upper Atmosphere Radar

Monostatic coherent pulse Doppler radar VHF (46.5 MHz), 1MW peak power, 475 crossed Yagi antennas Pulse length: $1-500 \mu s$, Antenna aperture: $8330m^2$ (D=103m)

京都大学 生存圏研究所 信楽MUレーダー Middle and Upper Atmosphere Radar

- Digital 25 channels
- •332 times per second
 (3 msec)
- 85 ranges every 3ms

Data rate ~20 GB/hour

18k radiant point on the ecliptic sky

D-criterionを用いた流星群の放射点検出(黄道座標系)

Comparison of Orbits between MU Radar and Optical Observations

Object	Date	а	е	i	ω	${\it \Omega}$	D_{sh}
	UT	au	—	0	o	0	—
Phaethon	-	1.27	0.89	22.2	322.1	265.2	-
1-radar	Dec/14	1.27	0.89	23.6	325.1	262.6	
1-opt	15:29	1.22	0.88	23.5	325.1	262.6	0.013
2-radar	Dec/13	1.20	0.89	24.1	325.8	261.7	
2-opt	18:49	1.39	0.91	23.2	325.8	261.7	0.030
3-radar	Dec/13	1.21	0.89	22.5	324.5	261.6	
3-opt	16:14	1.26	0.88	22.7	324.5	261.6	0.037
Geminids	2010	1.30	0.899	25.0	326.1	262.3	-

MUレーダー流星ヘッドモードによる軌道決定精度は,光学2点観測と一致 Orbital determination by Radar and optical observation is comparable.

Abe et al. (2015) ISTS

Velocity distribution biased by v³

v~20km/s is dominant after de-biased.

Strength of Meteoroids classified by Kb parameter

Abe, Kero, Nakamura, Watanabe+(2017) in prep

MANOS (Mission Accessible Near-Earth Object Survey)による約250個のNEOタイプを見ると,直径が100m以下のNEOでは, C/D/Xタイプ小惑星が約80%, S/Qタイプ小惑星が約20%

Radar Cross Section \propto **Size**

Number

To understand the RCS - magnitude relation, simultaneous measurement with optical video observation is needed

流星検出アルゴリズム Hough 変換の応用による直線構造の検出

流星検出アルゴリズム Hough 変換の応用による直線構造の検出

Faint Meteor An Image containing a faint meteor (stellar sources are masked)

Faint Meteor An Image containing a faint meteor (stellar sources are masked)

流星モニタリング観測 Tomo-ePMによる観測 on 2016.04.11 and 14

観測日	2016.04.11 (およそ5時間分)	観測日	2016.04.14 (およそ5時間分)
観測領域	地球の影領域(人工衛星の影響を抑える)	観測領域	地球の影領域(人工衛星の影響を抑える)
観測モード	1 exp. = 0.5 秒積分×360 frame	観測モード	1 exp. = 0.5 秒積分 × 360 frame
フィルタ	なし	フィルタ	なし
データ総量	290880 frame	データ総量	316800 frame
総検出数	18362 events	総検出数	5273 events
流星検出数	1514 events (重複合め 2002 events)	流星検出数	706 events (重複合め 926 events)
検出レート	~15 events/180s	検出レート	~6.4 events/180s
等級*	4.5–12.5mag.	等級*	4.5–11.5mag.
			1 CONTRACTOR AND A CONT

*Video rate magnitude (lye+ 2007)

- 天候は04.11の方が良好で総検出数もおよそ2倍ほど
- 流星の検出数は真夜中をピークに緩やかに変化(04.11)
- 典型的な検出レートは 200-400 hour⁻¹ 程度

資料提供;東京大学・木曽観測所 酒向重行,大澤亮

微光流星の分光镭見測 M₄~7-8mag.の流星の分光(R~10)

Maximum Magnitude

Abe, Kero (2017) in prep

Abe, Kero (2017) in prep

Maximum Magnitude

Cumulative flux of particles to the Earth's surface, Hughes (1987)より引用

Summary

Tomo-e GOZEN

1晩(5hr)に1000個の超微光流星のサイズ分布・軌道 1晩(5hr)に100個の超微光流星の組成・軌道

4万個のサイズ分布・軌道,4千個の組成

- 13等級までの流星撮影
- 8-9等級までの流星分光(400-700nm)
- 撮影; 100-300 events/hr for <12-13 Mag FOV_x ~ 8deg
- 分光; 20 events/hr for <8-9 Mag
- 角速度を仮定してV等級見積りが可能
- 物質情報(Fe/Mg/Na)を得ることが可能 MU ~ 200 hr(1ケ月)/年の時間を確保可能
- MU Radar
- 120-170 events/hr for 13 Mag? eff_FOV ~ 4deg
- 軌道決定が可能
- 物質強度の情報を得ることが可能
- Goal;人類未踏の太陽系ダストのビックデータを生む
- 10µm ~ 1000µm (10^-9 g ~ 10^-4 g)のダストのサイズ分布を明らかに
- サイズ, 軌道, 組成を明らかにし, 地球到来物質の起源と小天体との関連 を明らかに