可視偏光サーベイSGMAPと

(Search for Galactic Magnetic-field by All-sky Polarimetric Survey)

川端弘治(広島大学)

on behalf of SGMAP team

SGMAP: Summary

1-mクラスの地上望遠鏡と、可視2バンド (g', l') 広視野偏光器 北天を中心とした数百万個の恒星 (< 14 mag, δ > -20°)を観測y 世界初の一様な北天偏光サーベイ

早くて2019年から

Development phase ~2.5 yr Observation period ~4.5 yr Data analyses phase ~3 yr

90%の観測は偏光サーベイへ(各点160sec露出、全天の60%を 4.5年でカバー; Δp < 0.15%@V~14) 残り10%は、特定領域の繰り返し観測へ(突発天体のモニター) 予算化は未定(各種競争的資金へ応募中)

Telescope

or

1.3-m telescope ISAS/JAXA

第二候補

Recently ISAS decided to call for new proposal to make full use of 1.3-m telescope. (Even elocation from Sagamihara campus is available).

 Just remove tertiary mirror or
 Secondary mirror replaced (To enlarge the vignetting-free FoV) Relocate to Higashi-Hiroshima
 Observatory
 Remove tertiary mirror or replace secondary mirror

Higashi-Hiroshima Observatory

Instrument design (for Kanata 1.5-m)

Main mirror: D = 1.50m; Secondary: D = 0.3232m; Composite F ratio = 6.114 (including reducer); Field of View 50' diameter; Final F ratio = 2.02 (at CCD) Four 4k4k CCDs; Pixel scale 0.76"/pixel (15 μ m)

Any incident ray to HWP, DP and PBS is inclined less than 10° against the optical axis to keep their efficiency.

80% encircled energy radius <0.7" over 50' FoV for g' and i' bands

Vignetting of FoV (for Kanata 1.5-m)

Current primary-secondary mirror system produce a vignetting of incident rays in outer region of the field of view (>36' Φ) by the center hole of primary mirror and also secondary mirror

Fottprint of effective rays on the secondary mirror

Efficiency of aperture versus field angle.

If we introduce a new secondary mirror ($\Delta z = -57$ mm and composite focal length $\Delta f = -2800$ mm), a vignetting-free FoV 50' is achieved.

Scientific Cases with SGMAP

Galactic Magnetic fields (disk, halo)

- Synergy with distance measurements by Gaia/JASMINE satellites
- Supplementary for all-sky radio polarimetric survey and targeted NIR polarimetric survey
- Process of magnetic field around circumstellar region/SNR, origin of largescale magnetic field, etc.
- Discovery new/new-type polarized objects (active stars, AGNs)
- Statistical study of stellar atmosphere, activity, mass-loss
 - Synergy with SDSS spectral catalogue, etc.
- Interstellar dust
- Estimation of Fore-ground interstellar polarization (CMB, external galaxies)
- Estimation of more precise fore-ground interstellar extinction (calibrated by regional variation of R_v)

Survey Plan

- With 40s × 4 exposures, ∠p=0.15% @g'=14.0mag
 Seeing 1.8", Sky 18mag/arcsec², total efficiency 20%
- 1 set of observation takes 4.6 minutes (with overhead), 100 sets in one night (8 hr)
- Survey speed: 46.4 deg²/day

Region 1: Galactic plane survey

- $|b| < 30^{\circ}, l = \sim 0 220^{\circ} (12000 \text{ deg}^2)$
- − 12000/46.4 → taking 0.71 yr
- Weather factor 0.33 \rightarrow 2.1 yr
- Region 2: Mid-high latitude survey
 - $|b| \ge 30^{\circ}$ available from Hiroshima (13200 deg²)
 - − Weather factor 0.33 \rightarrow 2.4 yr

Region 1': Higher priority for multi-wavelength study of Galactic structures including Radio loop/Fermi bubble region.

Optimistic Schedule

Fiscal Year	Telesocpe/dome	Instrument	Observation/data reduction
2017	Final selection of candidate telescope	Design completion, fabrication of optical components	
2018	Refurbrishment, installation	Detector unit Lens unit Assembling	
2019		Mounting to telescope Experimental observation	Survey obs. starts Region 1
2020- 2021			Obs. Region 1
2022- 2023			Obs. Region 2 Data reduction
2024-26			(Obs. Region 2) Data reduction Catalogue release

How improved with SGMAP?

No star with Heiles (2000)

14 stars in Heiles (2000)

Science Case: Structure of Galactic Magnetic Field with Mapping Interstellar Polarization

Wavelength dependence of typical interstellar polarization (peak $\lambda \propto$ radius of grain)

Direction of linear polarization correlates (integrated) magnetic field Magnetic field has large-scale (coherent) component and random component (Heiles 1987, 1996) Scale length of random component~100pc (diffuse) or a few hundred pc (all) (Jones et al. 1992)

Competition with other projects

them hemisphe Telescope will be insentant for SGNAP SUPPLIE

(PI: Dan Clemens@Boston Univ) 1.8m telescope (CTIO) + 10' FoV 1k1k InSb array 1 NIR(H) band Galactic plane survey (| b| ≤ 1

SGMAPによるタイムドメイン天文学

- 可視域の連続光が偏光を示す時間変動天体 •太陽系始原(彗星、小惑星 ~day) • 質量放出星(AGB, LBV, ~month-year) 爆発型~疑似光球(新星、超新星、キロノバ, ~day-month) • 爆発型~ジェット・降着円盤(X線連星、マグネ ター、GRB残光、AGN, <sec-week)

X線連星のジェットによるシンクロトロン輻射成分

ブラックホール連星V404 Cyg爆発時の偏光 (かなた HONIR、ピリカ; Tanaka+ 2016)

(ジェット成分が強いフェーズの予想) 光学的に薄い 自己吸収 thermal emisson disc/reprocessing <mark>ال</mark>أن シンクロトロン シンクロトロン self-absorbed optically thin synchrotron synchrotron (降着円盤) (ジェット) 熱的放射 シンクロトロン放射 zation IRVBU 80 н 編光 0 13.5 14.5 15 15.5 13 14

X線連星の多波長SED/偏光の模式図

Kバンド付近で数十%もの大きな偏光 が期待される(かも)

Shahbaz+ (2008)

しばらくしてから可視シンクロトロンフ レア活動性が現れる場合もある

活動銀河核ジェットによるシンクロトロン輻射成分

MJD=56281

6.0

フラックス

属

ブレーザー 3C454.3の2009年アウトバースト (広島大かなた1.5m/TRISPEC)

狭輝線Seyfert1銀河PMN J0948+0022の Intra-night variability(かなた/HOWPol)

MJD=56283

[10⁻¹²erg/cm²/s] Tot, Flux 40 2.0 40 30 20 [%] 10 聊中世中 0 90 P.A 45 [deg] Ą. 0 -45 -90 17 18 19 UT [hour] UT [hour] UT [hour] Itoh+ (2014)

ブレーザーと同様の短時間スケールの 激しい偏光変動

X線・ガンマ線・電波と連携した突発現象のモニター観測

重力崩壊型(IIP)の偏光と爆発機構

SN IIP 2004dj (~3Mpc) Leonard+, Nature (2006) 光度・連続光偏光の時間変化

連続光領域

水素外層が光学的に薄くなり(~プラトーが終了し)、より内側の領域の大気分布の非球対称性が見えた。
 SDSS i' フィルターは連続光観測にちょうど良い

ガンマ線バースト残光の輻射機構・磁場起源

これまでの早期残光の直線偏光の測定 (Liverpool2m/RINGO、かなた/HOWPolなど)

GRBからの経過時間(秒)

Mundell+, Nature (2013)

最早期観測(<10³s)および円偏光観測は依 然稀少(最近も2本のNature論文あり) 偏光観測は残光の輻射メカニズム、磁場や ジェットの構造により迫れると期待されてい るものの、進み方は遅い GRB 121024Aでの爆発後数時間以降の 可視残光に関する直線・円偏光測定 (VLT/FORS)

SGMAPからTomoeサーベイへの希望(#かなたからの希望) • 突発天体情報を開示してもらえば十分 - X線連星・AGN等のコンパクト天体によるシンクロト ロン放射起源のイベントなら特にうれしい - 同じ晩のうちならなお良いが、必須ではない サイエンスを遂行するにあたって必要な情報 データ - 位置と可視バンドの等級(逐次更新) - ウェブorメールでの情報開示(SGMAPの自動観測) に対応できるような形式で) - 銀緯や天の川のE(B-V)値、既存カタログでの等級 などの情報も付加してもらえると嬉しい。

予算化は未定(各種競争的資金へ応募中)