広島大学新読み出しシステムのノイズ調査と新InGaAs検出器の性能評価 森裕樹、宇井崇紘、川端弘治、秋田谷洋、吉田道利(広島大学)、伊藤亮介(東京工業大学) 酒向重行、森谷友由希(東京大学)、山下卓也、中屋秀彦(NAOJ)

1 HONIRとかな	た望遠鏡	2 HONIRの突発天体への取り組み
<complex-block><image/></complex-block>	かなた望遠鏡 口径1.5m。 駆動速度は 方位方向: 5度/秒 高度方向: 2度/秒 と、このクラスの 望遠鏡としては世界最速クラス。 ➡ GRB等の突発天体に即座に対応。	・VIRGO検出器の読み出し高速化 ➡本ポスター3章参照
	HONIR ・Hiroshima Optical and Near InfraRed camera (可視赤外線同時カメラ)。 ・可視1バンド、近赤外1バンド(将来的には近赤外2バンド)による同時撮像、分光 および偏光撮像、偏光分光観測が可能。 ・赤外線検出器は16ch同時高速読み出し対応のVIRGO-2k(HgCdTe,2k×2 pix)を 搭載しているが、読み出しシステムは約20年前に製造されたMACS2を使用しており、 4ch読み出し(約5s)を行っている。	 ・2つ目の赤外線検出器搭載による3バンド同時観測 ⇒本ポスター4章参照 ・一露出型ウォラストンプリズム 搭載による偏光観測の高速化
		図2:一路出型ワオフストンノリスム

3赤外線検出器VIRGO用新読み出しシステム

3.1 概要

16chによる高速読み出し(約1.2秒) →かなた望遠鏡のメインサイエンス である突発天体に対して有効。

•2013年:開発開始

・2016年:望遠鏡搭載時のVIRGO読み出しに成功。

図3:新読み出しシステムのエレキ 表1:新読み出しシステムの要求性能

3.3 バッドコラムへの対策

◎読み出しの速度を遅くするとバッドコラムが短くなった(図9)。

図9: 左→1.2s読み出し($5 \times 10^{-6} s/pix$) 右→3.6s読み出し($1.5 \times 10^{-5} s/pix$)

- ➡読み出し列の切り替わりの際、電流の供給がクロックの速度に 追い付いていなかった?
 - ➡しかし、読み出し速度を速くすることが目的なので全体を 遅くしては意味がない。
- ➡列の切り替わり時のみクロックを遅くしたらどうなるか? 列の最初の2ピクセルの読み出しクロックの時間幅を長くした。 その結果、バッドコラムが短くなり(図10)、ノイズの大きな 増加も見られなかった(図11)。以上より、列の切り替わり時に 時間を空ける手法はバッドコラム対策として有用であると考える。

読み出しノイズ

3.4 試験観測~M1 60sec積分~

◎2017/2/2に通常のクロック、2/13にバッドコラム対策
クロックで新読み出しシステムの試験観測を行った。
観測対象:かに星雲M1、バンド:J、積分時間:60sec。
・観測の結果、正常に読み出しを行えたが、チャンネル間
のカウントムラが大きかった。オーバースキャン補正を
行ったところ、チャンネル間のムラは小さくなったが、
referenceピクセルにあるバッドコラムに引きずられ、
補正後の画像に縦線が伸びている。バッドコラムの影響は
通常のクロックとバッドコラム対策のクロックを比較すると、
対策クロックの方が抑えられてはいるが、それでも影響が
残ってしまった。今後は根本の解決、及びバッドコラム
解決によるオーバースキャン補正の両方を視野に入れ、

図12:試験観測結果。一次処理を行った画像 左上:1.2sクロック(通常のクロック)を使用 右上: 左上の画像に対しオーバースキャン補正したもの 左下:1.56s(バッドコラム対策)クロックを使用 右下: 左下の画像に対しオーバースキャン補正したもの

右下→1.56s読み出し(1.0×10⁻⁴s/pix)

チャンネル間のカウントムラの解決を目指す。

	4 国内メーカー製 InGaAs 赤外線検出器 4.1 概要	4.2 かなた望遠鏡ナスミス焦点での試験観測 ・かなた望遠鏡ナスミス焦点にて128×128InGaAs素子の試験観測を行い、素子の効率を導出した。					
- [・国立天文台・KEKとの共同研究(現PI:中屋)。	口径D[cm]の望遠鏡に等級M	の天体から1秒間に		Hバンド	リバンド	
	現在は冷却試験用のデュワーの整備を継続すると 共に、試験開発した128×128素子の試験を行っている。 2月の初頭に1.3k×1.3k素子が納品された。今後はこの 素子の評価試験を行い、HONIRへの搭載を目指す。 HONIRへ搭載されることで可視1バンド、近赤外2バンド での同時偏光撮像が可能になり、一度の露出で得られる 情報量が増加し、突発天体に対して力を発揮する。	入射する光子の期待値 = $\pi (\frac{D}{2})^2 \times \frac{\Delta \lambda F_{\lambda} \lambda}{hc} \times 10^{-\frac{M}{2.5}} \cdots (式1)$		実等級 (カタログ値)	5.611	5.576	
			 F_λ: 0等級のフラックス 図13: 試験観測で得た画像。 RA=6h48m57s DEC=-15d08m40s 2sec積分 	実測カウント (<i>e/</i> sec)	6.65 × 10 ⁶	$5.97 imes 10^{6}$	
て				カウントの 期待値(式1)	$2.60 imes 10^{7}$	$3.28 imes 10^7$	
				総合効率%(大気・ 望遠鏡含む暫定値)	25.5	18.2	
				表2:128×128InGaAs素子の効率の参考値			