
CONTRIBUTED PAPERS 167

MILLIMETER-WAVE MAPPING OF THE W3 CORE REGION AT 4 AND 6.5 mm

Kenji Akabane, Hisashi Hirabayashi, Yoshiaki Sofue Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-13, Japan

Radio continuum observations of the core region of the compact HII region W3 at 6.5 and 4 mm wavelengths were made using the Nobeyama 45-m telescope. The 6.5-mm map agrees with lower-frequency maps, showing a major contribution of free-free HII emission. At 4 mm an excess over the HII emission is found, which indicates a contribution from dust grains. Comparing with sub-mm and FIR data, we suggest the existence of two dust components: normal dust at 50 K, and low-temperature (7 K), large-size grains (or interstellar "stones") in the region west of the W3 core.

The 46-GHz map (Figure 1) has a simple structure convolved from the three point-like sources W3A, B and C+D and a weak extended component north of C+D. The 75-GHz map (Figure 2) looks similar to the 46-GHz map. However, at 75-GHz a more extended component than at 46-GHz is found near W3-C+D. The 75-GHz excess relative to the 46-GHz emission is shown in Figure 3. The excess is distributed in the SW edge of the W3 core and is strong in the C+D region. The 46-GHz emission may mostly come from optically thin HII gas, while the 75-GHz emission comes from both the HII gas and dust grains.

 $(0,0): (\alpha = 0.2 \text{ h}.2 \text{ lm}.50\text{ s}, \delta = +61^{\circ}.52'40''$. 1950)

Fig. 1. A 46-GHz map of W3. The W3 peak contour of 120 corresponds to 5.4~K tb.

168 CONTRIBUTED PAPERS

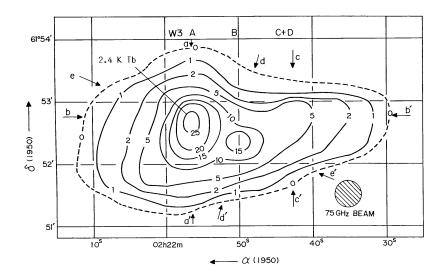


Fig. 2. A 75-GHz map of W3. The peak contour of 25 corresponds to 2.4 K Tb.

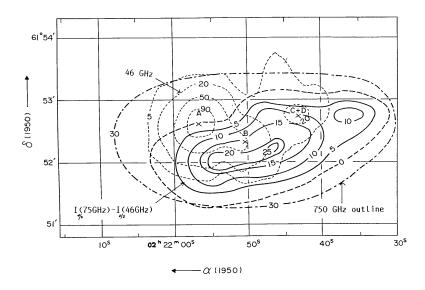


Fig. 3. Excess in the 75-GHz emission over the 46-GHz emission. Contour levels are in percentage of the W3 peak.

A spectrum of the excess brightness over the free-free emission is shown in Figure 4. The spectrum at λ < 1 mm may be fitted with an optically thin warm dust of 50 K with an optical depth depending on ν as τ $^{\alpha}$ ν^2 and τ = 0.02 at 750-GHz. However, at λ > 1 mm we have a difficulty to fit the spectrum with this dust component alone. We may therefore introduce a second component so that the observed brightness can be ex-

CONTRIBUTED PAPERS 169

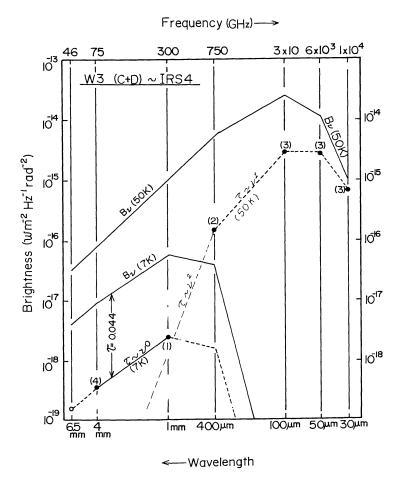


Fig. 4. Intensity spectrum on W3 C+D. The free-free HII emission has been subtracted. Plotted data are: (1) Westbrook et al. (1976); (2) Jaffe et al. (1983); (3) Werner et al. (1980).

pressed as B(ν) = $\tau_1(\nu)$ B $_{\nu}(T_1)$ + $\tau_2(\nu)$ B $_{\nu}(T_2)$, where τ_i is the optical depth as a function of the frequency and B $_{\nu}(T)$ represents the Planck's function with T_i the dust temperature. For the first term we have T_i = 50 K and $\tau_1(\nu)$ = 0.02 ($\nu/750$ GHz) 2 . The second component can be fitted with T_2 = 7 K and τ_2 = 0.044.

The total luminosity of the 50-K component is L(50 K) $\sim 10^5$ L_{\odot} and the total grain mass is several M_{\odot}; the total gas and dust in the W3 core region is 10^3 M_{\odot} for a dust-to-gas ratio of 10^{-2} (Jaffe et al. 1983). This component is like a typical dust cloud normally found in compact HII regions (Schwartz 1982).

The characteristics of the second 7-K component are unclear. As the frequency dependence is small, $\tau \propto \nu^0$, we may suppose that the particle size is large compared with λ , or a >6 mm. This implies that the material is possibly "stones" rather than grains. The total luminosity of this component is L(7 K) ~ 4 L $_{\odot}$. If we assume that the particle radius is a ~ 1 cm and density $\rho \sim 1$ g cm $^{-3}$, the total mass of the stones is M(7 K) $\sim 4\pi/3$ ρa^2 L/4 $\pi a^2 \lambda T^4$ ~ 10 M $_{\odot}$ with λ the Stefan-Boltz-