A Search for High Redshift Absorption Lines (J=0-1) of CO Molecules toward Quasars

Fumio Takahara ,Yoshiaki Sofue ,Naomasa Nakai and Makoto Inoue

Nobeyama Radio Observatory, Tokyo Astronomical Observatory,

University of Tokyo, Nobeyama, Minamisaku, Nagano 384-13, Japan

and

Hiroto Tabara and Tatsuji Kato
Faculty of Education, Utsunomia University,
Mine 350 ,Utsunomia 321 ,Japan

Paper nº 89

Abstract

A search has been made for the first time for absorption lines by intervening CO molecules toward high redshift radio-loud quasars. The 45-meter telescope at the Nobeyama Radio Observatory combined with a wide band spectrometer was used to detect high redshift CO (J=0-1) absorption lines in the 40GHz band with $0.5\sim3.75$ GHz width. No significant features are found in the obtained spectra for six quasars, OS+356, OX+057, OD+148, OJ+248, OI-061 and Q1331+170.

§ 1. Introduction

Investigation of absorption lines in quasar spectra gives very important information about underlying galaxies and intervening material. As a result of extensive search in optical-UV bands, there is clear evidence for the existence of a hot gas $(T>10^4~{\rm K})$ in the intervening galaxies and a primordial intergalactic gas. As for a cold gas $(T\sim10^2~{\rm K})$, Varshalovich et al. asserted that they have found redshifted UV absorption lines of H_2 and CO molecules in

⁺ Speaker: a visiting astronomer at the Max-Planck-Insitut für Radioastronomie as a A. von Humboldt Fellow on leave from NRO during June - Sept. 1983.

⁺⁺ NRO, a branch of the Tokyo Astron. Obs., University of Tokyo, is a facility open for the general use by researchers in the field of astronomy and astrophysics.

[&]quot;Quasars and Gravitational Lenses"; 24th Liège Astrophysical Colloquium, Institut d'Astrophysique, June 1983.

some quasars. $^{1)}$ They also proposed that CO and H_2 CO molecules might appear as absorption lines in radio bands. $^{2)}$

Here we report the results of the first search for CO (J=O-1) redshifted absorption lines toward high redshift quasars which have strong continuum emission in millimeter wavelengths. We used the recently constructed 45-m telescope at the Nobeyama Radio Observatory which is appropriate for such a purpose because of its high surface accuracy and wide band acousto-optical spectrometer available.

§ 2. Observations

We select six quasars which have redshifts such that CO (J=0-1) line (rest frequency of 115.27GHz) is redshifted to 40GHz band. Among six sources thus selected, two objects have optical absorption lines and one has a HI absorption feature.

Observations were conducted April 22, 1983 at the Nobeyama Radio Observatory. The frequency range was set around the expected redshifted frequencies with $0.5\sim3.75 \mathrm{GHz}$ band width. For all objects we used wide band spectrometers which have a resolution of 250kHz. In addition, for two objects which have optical and HI absorption lines, we used high resolution spectrometers with a resolution of 40kHz. In 40GHz band those resolutions correspond to a velocity resolution of about 2km/s and 0.3km/s, respectively. The system temperature was about 600K and the integration time was $45\sim90$ minutes for each object with the standard on-off method.

§ 3. Results

In Table we list parameters and obtained results for each object. We estimate the expected antenna temperature T_A , of the continuum level, assuming reported flux densities and the aperture efficiency of 40 percent at 40GHz. The obtained rms temperature for a band width of 500kHz, $T_{\rm rms}$, is about 0.05K. Then we could recognize absorption features due to intervening

CO molecules at the 3σ level, if the optical thickness, τ , satisfies $T_A(1-e^{-\tau})>3T_{\text{rms}}$. For example in case of OX+057 we could recognize absorption features if $\tau>0.2$ for a 4km/s width. Examples of the obtained spectra are shown in Figs. 1 and 2. In Fig. 1 is shown the case of OX+057, which has the strongest continuum emission among six sources studied. In Fig. 2 is shown the case of Q1331+170 which is known to have a HI absorption feature. As is seen in these figures no significant absorption features are found and the upper limits for the optical depth of intervening CO molecules, τ_{ul} , are shown to be an order of $0.1\sim1$.

Table

source name	redshift	expected frequency (GHz)	conti. flux (Jy)	T _A (K)	frequency range (GHz)	integ. time (min.)	T _{rms} (K)	$ au_{ m ul}$
0S+356	1.814	40.96	1.7	0.39	40.885-42.885	45	0.05	0.5
OX+057	1.936	39.26	4	0.92	39.135-42.885	45	0.05	0.2
OD+148	2.065	37.61	1.3	0.28	37.485–39.485	45	0.06	1.0
0J+248	2.046	37.84	1.4	0.32	37.485-39.485	60	0.055	0.7
OI-061	1.901 1.9299* 1.9123*	39.735 39.343 39.580	1	0.23	39.300-39.800 39.323-39.363 ⁺ 39.560-39.600 ⁺	90	0.035 0.08 ⁺⁺ 0.08 ⁺⁺	0.6
Q1331+170	2.081 1.7852* 1.7755* 1.7764**	37.413 41.387 41.531 41.518	0.5	0.12	41.350-41.850 41.367-41.407 ⁺ 41.511-41.551 ⁺ 41.511-41.551 ⁺	90	0.035 0.07 ⁺⁺ 0.08 ⁺⁺ 0.08 ⁺⁺	2.1

^{*} optical absorption, ** HI absorption

Although the present preliminary search has revealed no significant absorption features, this type of observations is of great importance in

⁺ high resolution spectrometers, ++ values for a bandwidth of 80kHz

searching for cold gas in distant galaxies and intergalactic matter.

This work is carried out under a collaborating observation program at NRO.

References

- 1) D.A. Varshlovich and S.A. Levshakov, Comm. Astrophys. 9 (1982), 199.
- 2) V.K.Khersonskii et al., Sov.Astron.-A.J, <u>25</u> (1981),16.

The obtained spectrum of OX+057 for a frequency range of $39.135-39.385 \, \mathrm{GHz}$. Vertical line indicates the expected location of a redshifted CO (J=0-1) line (z=1.936). Horizontal lines show the expected continuum level.

The obtained spectrum of Q1331+170 for afrequency range of 41.35-41.60GHz. Vertical lines indicate the expected locations of redshifted CO lines (z=1.7755,1.7764 and 1.7852). Horizontal lines show the expected continuum level.