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In the expanding universe, the thermal instability, if it occurs, can develop much more
quickly than the gravitational instability and, therefore, may provide a possible mechanism
to initiate the formation of galaxies. The general characteristics of thermal instability
are discussed for non-equilibrium media with due regard to the ionization change and
the optical depth effect of fluctuations.

If the matter can be brought to a temperature high enough to ionize hydrogen after
107 years of the cosmic age, the energy loss from the matter becomes mainly due to the
bound-free processes rather than the Compton scattering and the thermal instability
will be set up. Such a high temperature (~10* °K) is excluded in the thermal history
of the expanding universe even if the effect of hydrodynamic turbulence is taken into
account, since the inverse Compton loss it extremely large just after the epoch of the
recombination of hydrogen when the turbulence decays rather rapidly. There is, how-
ever, a possibility that the turbulent energy is stored in the magnetic field and in cosmic-
ray particles at the epoch of hydrogen recombination and released later (~107 years)
when the inverse Compton loss becomes less efficient.

§1. Significance of thermal instability

Galaxies may be formed from fluctuations in the expanding universe.
Statistical density fluctuations of thermal origin, however, are very small, for
example, 107 for the scale of galaxies.” Moreover, the growth rate of fluc-
tuations for the case of gravitational instability in the flat-Friedmann universe
is proportional to #¥® (¢ is the age of the universe) and is very slow.? If
the nonlinear acceleration is considered, density fluctuations at 10° years with
the relative amplitude larger than 107 are estimated to reach distinct conden-
sations within the cosmic age of 10" years.**

Two types of origins may be considered for these initial fluctuations;
one is the primordial one and the other is due to the thermal instability
which amplifies fluctuations. The primordial density fluctuation, however,
cannot survive until the epoch of the recombination of hydrogen if the mass
is less than 10Mg, and in addition they suffer strong damping at the stage
of the recombination of hydrogen.”® This means that some mechanism of
excitating fluctuations is needed after the recombination for the formation of
galaxies. Then, the thermal instability may provide a suitable mechanism,
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because the growth rate of the amplification is possibly large when the energy
exchange between matter and radiation exists.

Now, we consider that the.gravitational contraction proceeds at the time
scale of free fall if disturbances of finite amplitude are triggered by the
thermal instability in larger sizes than the Jeans wave length. On the other
hand, since the time scale of thermal instability is characterized by the length
scale and the speed of sound, a disturbance of smaller size has larger growth
rate.” Therefore, we expect that clouds or grobules first formed by thermal
instability may be much less massive than galaxies, and that statistical fluctu-
ation of an ensemble of grobules may be large enough for larger masses than
the Jeans mass to condense into proto-galaxies. If grobules are well stirred
by the existing turbulence, the root-mean-square density fluctuation of an
ensemble of N grobules amounts to be N2 which should be larger than
107 at the cosmic age of 10° years.

The above considerations lead us to conclude that

N<10° (1-1
and
NM>M;, (1-2)
where M, and M; denote the mass of a grobule and the Jeans mass, respec-
tively.
Thus, we have

Mp>107°M; . (1-3)

The value of M; is provided by the balance between the gravitational
energy and the turbulent kinetic energy of grobules so that

GM:; 1
47: 173 2 v§r7 (1'4)
<MJ 3 ")

where v, denotes the random turbulent velocity of grobule.® The value v
depends in general on the length scale concerned. Referring to the peculiar
velocities of galaxies, we may take v, to be 10* km/sec at 10° years. Then,
the Jeans mass M; is estimated to be about 10*M which is of the order of
mass of a galaxy, if p in Eq. (1-4) is put to 107 g/cm®. From inequality
(1-3), we have M,>10°Mg. ,

In the following sections, we shall study whether grobules of mass larger
than 10°Mg could be formed by the action of the thermal instability in the
expanding universe.
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§2. Thermal instability in the expanding universe

Radiative processes provide interactions between matter and radiation
which consist the universe. If fluctuations of macroscopic thermodynamical
quantities of matter are excited by the action of radiative processes, the
phenomena are called thermal instability. The most important factor charac-
terising thermal instability is the functional dependence of the energy loss or
gain of matter through radiative processes on the thermodynamical quantities.”
However, the expansion of the universe gives rise to a number of effects in
the problem to which we shall now turn to study.

To begin with, we consider the general equations which matter and
radiation must be obeyed under the Newtonian approach. In the case of
the size and density of galaxies, the Newtonian treatment is sufficient.
Thermodynamical quantities of matter are governed by the following equations
of continuity of mass, momentum and energy, the equations of state and the
degree of ionization.

Yo7 (o) =0, 2-1)
Z—Z%—(v-?)v—l——})—?p%—?q&z—-g’, (2-2)
0 0 1
& enlod g -en]d)
=—L+V(K-FT), 2-3)
p=Na(1+x)pkT (2-4)
and
dr _ BN
Nt —g, (2-5)

where o, p, T, U, v, ¢, L, P, K, x, J and N, are, respectively, density,
pressure, matter temperature, internal energy per unit mass, velocity, gravi-
tational potential, energy and momentum loss of matter per unit mass, thermal
conductivity, degree of ionization, the function of ionization rate and the
Avogadro number. Here, the internal energy U is composed of thermal
energy and ionization energy:

itv’fkTerx}:“—l 24 Nyrz, (2-6)

r—1 o

U:NA{

where % is the ionization potential of the atom.
' The energy loss of matter . is due to the radiative processes and
mechanical ones. If the former is denoted by R and the latter by 4,

L=R+ . 27



Thermal Instability in the Expanding Universe 123

R now should be an integral of energy loss of matter R, due to the
radiative processes at the frequency of v over the wh

ole range of frequency
of photon,

R= S:.@,, dy, 2-8)
and R, is given by
R,=—rJ,+e,, 2-9)

where J, is the mean intensity at the frequency of v, given by J,=1 [4n

-SI,,dQ (1, is the intensity of a beam in the direction of g and @ is the solid

angle), r, is the mass absorption coefficient and &
mass.

the emission rate per unit
The momentum loss of @ is mainly due to radiative processes in the

expanding universe, so that P is the integral of momentum exchange between
matter and radiation &, over the whole range of frequency of photon,

@:Sjgzdu, (2-10)

and £, is given by

e (2-11)
where F, is the radiative flux given by l/n-S.uI,,d.Q, o,
cient, and ¢ the light velocity.

And then, we consider the radiation field at the frequency of ». The

mean intensity J, and the radiative flux F, are determined by the following
equations: 1®

the scattering coeffi-

1 0 1 da) 1 V.m — .

! (62f )T F= R, (2-12)
and

1(6 , 1 da _ .

c (615 T d )Fy+47 K,= —o(r,+0,)F,, (2-13)

where K, is the radiative stress tensor defined by 1/4n-S,a,uI,,d!3. We now

use the Eddington approximation which is known to be very optional;®

Kv=%t];1, (2-14)

where I is the unit tensor.

Next, we rewrite Egs. (2-1)~(2-5), (2:12) and (2-13), in terms of
normalized variables by unperturbed quantities. We assume the unperturbed
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state of the universe to be isotropic and homogeneous. In the matter domi-
nant stage, we have the relation that p,a®=const., where a is a scale factor
and p, is the unperturbed density. From the standpoint of the Newtonian
model, the medium expands from the center of an observer at the speed of
vo=(1/a)(da/dt)x where x is a position vector. The time scale of the
expansion is defined as ro.x=(3/a-da/dt)™ which is related to the time scale
of free fall ¢{’ = (47Gp,) ' as rex=1/V'6 -z for the case of the flat space.'®
The radiation field of the unperturbed state is expressed by F®=0.

We now measure time and distance in units of {” and a, respectively.
Then we obtain the following equations which are satisfied by the physical
quantities normalized by that of the unperturbed state:®®

9" . (*v*) =0 (2-15)
or o —

[——l—(v V):l * 4 v+

5 kz P p* V¥ = /ef‘} (*+e*)F*, (2-16)

Lt @D |in b= PRI a7, 21D)
pr=u*o*T*, (2-18)
kx %“l“c%k]/l*zj*, (2-19)
%‘—‘a———(r D6 +/15") J¥+ 41}f7-Fu*=p*g{Z" (2-20)

and
_}_—"g?_ (r—1>(1/6—+A6“)_Fu*+'§}'"7t7v*=—p*(rc*+o*)Fu*, (2-21)

where

RY¥=—gFJ}+ek. (2-22)
The differentiations with time and space are modified as follows:

_ dt ( o 0 o ) 9.93
dr= of” and F=a ox’ Oy’ Oz ( )
The variable with asterisk are the physical quantities relative to the unperturbed
quantities designated by the suffix 0 or to the free-fall velocity v: and v};

=0/400’ P*=P/P0’ T* T/n9 v*:(v_vo)/vf,

1+x JV*ZJ,,/PQ

*__ (4 2 *
¢* = (p—¢o) [V}, n iz’

and

Fv*=Fv/p0- (224)
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In addition, the following functions with asterisk are defined,
A =L*+ 9%, A= LF+IF,
Lr=e® O P gr= 0 g prx_ @0 po gk @ X0 g
o Po ’ 0 ’ Po ’

©)

R* = ©® Do R, K*= Tt K,
¢ Po NA<1 +x)ka2
¥ =02 o *=0pc® and ¥ =070, . (2-25)

0

In the momentum equation of (2-16), the term av* representing the
drag force appears. The resistance coefficient a is derived from two effects,
the expansion of the universe and the slipping of matter through radiation
field*® The former is given by an=1"/6rex=1/V6® and the latter by
a,=1{"/r1s, where rrs is the mean-free time of the Thomson scattering
(40a, T)*z./3muc)™ (o is the Thomson scattering cross section, a, the radiation
constant, x. the fraction of electrons, ¢ the light velocity), and so a=a,+a,.
The other effect of expansion is the time variation of the isothermal Jeans
wave length kr= (po/4rGoia*)*?, appearing in the momentum equation (2-16);

—%1nk3=1/63—(r—4/3)+(r—1)A6". (2-26)

The first term of R.H.S. is due to the expansion and the second to the non-
adiabaticity of the unperturbed state.

The equation of energy conservation does not include explicitly the term
of the adiabatic cooling of the unperturbed state, but that of non-adiabaticity.
As A* includes the ionizational energy loss of internal energy, (2-17) expresses
the conservation of thermal energy of matter.™ Denoting the time scales of

energy loss due to radiative, mechanical and ionizational processes by cz, ta
and 7, R*, H* and J* are rewritten as follows:

R*=¢0 /g, H*=c®/rg and I*=¢0 /ey, 2-27)
where tg, ta and 7; are given by

rpe N+ DT, No(A+)ET e N+ 2)RT,

R >R A ! x9
(2-28)

Moreover, denoting the time scale of energy loss by rz, we have
A*:z'g))/z'E and _.l_z__]'_+._]"._-—|~___]."_.. (2.29)

TE TR TH T1
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In Eq. (2-18) determining the ionization degree, the term of J§ is
included because of the time variation of Zy. Determining the radiation field,
J,f and F} are the ratio of J, and F, to the pressure of matter. In (2-20)
and (2-21), the time derivatives of J* and F* appear in the form of
[(0/67) — (r—1) (V6 +4)], because the term of — (=16 +4) is
derived from the time variation of material pressure.

Next, we shall study the stability from the behavior of infinitesimal
fluctuations. Without loss of generality, a perturbation 8f of any physical
quantity is assumed to have a wave form defined with a wave vector k so
that df=f1(c)e**", where a*=(1/a)x. From Egs. (2-15)~(2-21), we then
have the following linearized equations:

doe L, o, (2-30)
dr
du, __(_/e;)z _ Vs & t+as .
7 + auy Z pito= p 23 F,, (2-31)
" d o d r—1 = * * *
'——+<T“‘1>AT 7 _*—"[‘_“CAT“/I;:) 01+(T"1)(/1u“/1T)ﬂ1
| dr dr T
==&, (2-32)
_L—d_wﬂm = (IE—ID) o+ I pu+ I+ IET,, (2-33)
L kT, dr
_L[i_(r—l)(V6_+A§)JL+ L m
C dZ' 4‘Uf
=—K§L+(ﬁf~ﬂ¥)p1+$¥pl+(Rf“ 1*)/11 (2'34>
and
L[_‘il__(r_1)(1/6—+45"):lFl— R i — (e F, (2-35)
C d’l' Ut
where
=ik v, Ji=S:8J,,du and F1~ik~S:6F,,du. (2-36)
Here, : \
A*=_7§0)(61HITE| > A*:_T§°)<Glnlrg| )
P 8 alnp /o 7 ¥ olnT /o

1 = AF — AT+ K,

A= — of” (61n|rE] )
* % Olng /o

© © 0
*_ __ Tio 6‘1nlm|> %«__ _ Tf (6111]73[) *__~r§)(8ln|z-ﬂl>
R Y ( 0lnp /o Ri Q o Rif= 0o

TR olnT ¥\ 0lnp
(0) (U] : (0)
*:__Tf alnl’l'rl) *=____Tf (81n|n}> *_ __Tf <6]_nlz'll)
J; 7 ( olnp /o It O\ olnT /o Ji= P\ 0lnp /o
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and ,
x__ Do T§0)<61n171'> .
J] Jo 2,’%0) 6 ].nJ;[ 0' (2 37)
Besides, #F and off are given by
\erarza, \orar.a
k="———— and =% (2-38)
\orna \osas
Then, Eqgs. (2-30)~(2-35) are rewritten as follows:
AU _ Ay, (2-39)
dr
where
01 0’ - 1’ 0)
Uy —1, —a, (k/kT) 22
D (aE—a¥), —5, —(G—1) 4%
v=|? | a4 A (r—1) (47 ) T =147
1 (1/6) (Ix—I9), 0, (1/6) 9%,
Jy (R —RP), 0, cRf,
F, 0, 0, 0,
0, 0, 0,
0, 0, (ve/c) (w + o) /F2,
— G —1) (4 —47), (r— D, 0,
(1/6) 9%, (1/0)97, 0,
c(RE—RE), —cxd+ G—1) (V6 +45), —1/4v,
0, 4% [vr —c(ud+af) + (r—1) (V6 +4F).
(2-40)
where

60=x/kT, and JIJ:=J9*—4,.

If the eigenvalues and left-eigenvectors of A are represented by #; and

I; respectively, U is given as a superposition of the normal modes,

6
U= 2 C; l,' e,
i=1

(2-41)

In this case, e" is also represented as #V®/®% in terms of the proper time
t. It shows that the temporal changes of fluctuations obey the power law,
which is an important consequence of the expansion of the universe. Then,
the eigenvalues are the roots of the characteristic equation, which is formally

a 6th order algebraic equation.
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n+an—1

_ e+ A1/ Pt A/ Pin+t 1/r{(1+P)8— A+ L)
n—l~81 )

(2-42)

Here, x=*%/k; (ks is the Jeans wave number of (1/V'y)kr. Moreover, &,,
P;, 8, and @ are the third order algebraic function of n and defind as
follows:

— 4(”5““'05‘:) 7 * * (D' .
P n—l—c(TzG"ﬂ—aE") l_nccgskg{; (gzp +C‘59‘CR'II->9 (2 43)
— 4(’€gc+0'5") Vi * * D' .
Fr n+c(er+o) 1—nCIF R, (RF+CIFR), (2-44)
oy 0 CIEH9ITRY) ¥ (RF LIy R )
Lo=4F+ 4, —— Ly e~ Ly (2-45)
and
e LI RIIRD) kb (REFCIERD) ,
Qr=AF + A, Iy - LYoy , (2-46)
where
¢ n+c(r +oi)
K (n+cred) (n+cry +cay) + (cks/ve)*x* ’
f=— L ekt G—1)(VE +4D),
on—I¥ c
JE=9*— 9% and R.=Ri—Rf. (2-47)

» expresses the influence of radiative retardation and optical thickness of a
fuctuation and is the 2nd order rational function of n. Then, ¢ expresses
the influence of the ionizational change. The exact expression of (2-42) 1is
given in Appendix A. (

Now, we shall consider the characteristic behaviors of the eigenvalues.
The characteristic equation (2-42) has six roots, the three of which express
the thermodynamical modes, the one the ionizational mode and the two the
radiational modes. And then these three modes are coupled with each other
in different ways at various wave numbers.

Then, we are interested in the thermodynamical modes composed of three
roots, because they are accompanied with density changes. To observe the
nature of three modes, we shall consider the simple case that these modes
are isolated from the others. " - ,

The dispersion relation for the thermodynamical modes is given by

. n+ (/1) (Lr— L)
n nT+LT ) (2-48)

nt+an—1=—x
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Here Ly and L, do not include ionization effect and represent the dependence
of energy loss on temperature and density. The examples of the solid expres-
sion of Ly and L, are given in Appendix A.

If L,=Lr;=0, the characteristic equation becomes that of the adiabatic
Jeans instability;*®

n*+an—1+2°=0, (2-49)

where the term an is the difference from the case of static medium.

The characteristic behaviors of the eigenvalues can be analyzed con-
veniently in terms of the eigenvalues at the limiting wave numbers.’®

For =0, the three roots corresponds to the growth rates of free fall,
free expansion and thermal change:

_ a\ «a
w1 (5) 5 (2:50)
_ (44 2 44 .

ey (5 ) 5 (251
and

Ny= — [LT] x=0 + (2' 52)
On the other hand, for =0, we have

o= = ——[Lr—L].-. (2-53)
and

M= — 2 [(r— 1) Lp+ L] —% =+ zi. (2-54)

2y 2

Here, n, is the growth rate of the condensation mode while 7, gives the
growth rate and the frequency of the sound mode.

In the case of the flat Friedmann universe, neglecting the radiation drag
force, we have

nf=——_‘/2—§:- and n;—-—%, (255)
while n;=1 and #n.=—1 in the case of static medium.® In terms of the

characteristic time scale of ¢, #; and 7. are represented by r{”/rs and r/ze,
respectively. Therefore, zr= (V6 /2)¢® =3cex, that is, the free fall in the
expanding universe takes treble of the expansion time.

The nature of the three modes may be observed from the ratio I' of the
relative amplitude of perturbation in pressure and density,

refio nte  (1ond (o) (2-56)



130 M. Kondo, Y. Sofue and W. Unno

Table I. The ratio I' of the pressure amplitude to the density amplitude
of fluctuations at the limiting wave numbers of £=0 and x=rco.

220 =00
n r n r
ni—n
7t b ! < . 0
n;—nr
Ne—n
ne e c
Nne— Ny
ns b
nr — oo

The value of I' at the limit of x=0 and x=oo are tabulated in Table I.

In the case of n=nr, density change does not occur, and so this case
corresponds to the thermal mode where temperature and pressure vary pro-
portionally. The case of n=n. corresponds to the condensation mode because
equilibrium of pressure is preserved. Further the case of n=n, corresponds
to the sound mode because I'=7 and the phase velocity of this mode agrees
with the sound velocity which is expressed by ;i

Among the growth rates in the limits of large and small wave numbers,
ns, ne and ns belong to the modes of mechanical nature, while 7 and 7.
belong to the modes of thermal nature. At x=0, the eigenvalues n of the
three modes are real (2 modes are gravitational and 1 mode thermal), while,
at x=oo, only one eigenvalue is real and the other two are complex conjugate
(the condensation mode and the sound modes). Over the whole range of
wave number, therefore, one of the three modes has a real eigenvalue, and
the other two have real eigenvalues at larger wave lengths than a critical one,
but they have complex conjugate eigenvalues at smaller wave lengths. In the
adiabatic case, the critical 'wave length corresponds to the Jeans one. ' The
behavior of the three eigenvalues with increasing wave number depends on
the magnitudes of the growth rates at x=0 and x=oo, and typical cases are
illustrated in Fig. 1.

Now, I' of each mode varies with wave length. For example, I" of the
thermal mode which has a real n value over the whole wave lengths changes
from —oo to 0 as the wave length increases from 0 to oo (Fig. 1(c)), re-
flecting the fact that the compression of matter propagates at the speed of
sound and that for shorter wave length of a disturbance the compression rate
becomes larger.

We are now interested in the mode with a large growth rate, and we
shall consider the condition that R,n>>n;. This condition means that the
scale of growth time should be shorter than three times of the expansion time
of the universe. o “
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Fig. 1. The dependence of the growth rates on the wave number. The solid lines show
the values of real root 7 of the dispersion relation, and the dotted lines show the real
part of the complex root #. The case (a) is that of L,=Lp=0, the case (b) L,=2
X Lr>0, and the case (¢) L,=—2Lz>0.

We see from Eq. (2-56) that I'<<0, whenever R.n>ns. Then, from
the dispersion relation of (2-48), the condition that R.n>n; is satisfied by
one of the following inequalities,

Ly— L,+yn:<20, (2-57)
(Lr+ne+Var+4) (VP +4 (Li+n,) + 2%}
-—-‘?i(L,—Lpﬂnf) <0, (2-58)

Litn+Va*+4<<0 or VaP+4 (Lr+ne) +22<0. (2-59)

If L, and L, are independent of x, we can exhibit the region of R,n>n; in
the L;—L, plane, and this region is partitioned by the boundaries given
below ;
from Eq. (2-57),

Nne=>ns , (2-60)
from Eq. (2-58),

Hr=>ng (2'61)

and from the same equation,
R.ng>n; . (2-62)

In Fig. 2, this region is shown. The shaded part exhibits the region
where R,n<<ne over the whole range of x.
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Ly

Fig. 2. The region of Ren>n; on the Lr—L, plane. The shaded area
exhibits the region where Ren>>n; over the whole range of z.
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§3. Thermal conditions in the expanding universe

The spectrum of the background radiation first observed by Penzias and
Wilson fits with the Planck curve of 2.89°K.*® This background radiation is
attributed widely to the cosmic black-body radiation in the Big-Bang model
of the Universe as was predicted by Gamow'*® and as evidenced by the
observed high isotropy,®?” although other interpretations may not be ruled
out. The thermal history of the expanding universe may be divided into
two stages depending on the degree of ionization of hydrogen. In the
earlier stage, hydrogen is practically fully ionized and matter and radiation
couple strongly through the Compton scattering. In the later stage, the re-
combination of hydrogen is almost completed and the universe becomes trans-
parent for significant frequency range of radiation. The circumstance of the
hydrogen recombination and the later thermal history, however, may depend
very much on whether the dissipation of the existing turbulence could be
strong enough to heat up the matter to a high temperature or not. In this
section, we shall briefly summarize possible thermal conditions with and with-
out the turbulence in connection with the possibility of the thermal instability.

If the dissipation of turbulence is disregarded, protons and electrons
begin to recombine as the radiation temperature decreases to about 4500°K,
and the Lyman photons fill the universe. The Ly-a photons strongly in-
teract with neutral hydrogen atoms so that the ionization which occurs
most efficiently from the first excited level is directly influenced by the
rate of the reduction of Ly-a photons which are subject to ‘the reddening
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and to the two-photon emission from the metastable 25 state. The kinetic
temperature of matter does not separate from the radiation temperature
until the degree of ionization becomes very small, owing to the coupling
due to the Compton scattering. Later, the degree of ionization decreases
asymptotically to a value of 107 when the temperature considerably de-
creased.*”*®  Meanwhile, hydrogen molecules are formed by the reaction .
between neutral atoms and negative ions of hydrogen which are produced by
the relic free electrons.®* The number fraction of hydrogen molecules
amounts to 10™" at a radiation temperature of about 500°K and to 10~ at
about 300°K.2®

Throughout the thermal history discussed above (without turbulence),
the main process of energy exchange is the Compton scattering. At the
stage of hydrogen recombination, the two-photon emission takes away the
Ly-a radiation for which the medium is optically thick, but this process of
cooling cannot be comparable to the heating due to the Compton scattering.
Even after the temperatures of matter and of radiation split off at the stage
of neutral hydrogen, the Compton effect works through the relic free electrons.
Although the rotational levels of H, molecules provide efficient emission pro-
cesses, the population of H, molecules is too small.

The heat loss function (which is negative because the adiabatic cooling
of the matter temperature is more rapid than that of the radiative tempera-
ture; 7<<7T,) is then given by®®

orka, T}
*p =120 ZEG L a(T— T

po mum,.c

=—gFJ*, " j
where 3r
4ror k
Icf‘—“—ﬁo)'po—sz,(T,— T) r
muahi,C
and z, in the electron fraction. Then we t \
have
I*
L¥=0 and Lf=-com
P T T— 7‘;
Ne
In this case, ionizational effect can be Rens
neglected. '
Since in this case .L*=0 and _£¥ is =31
positive regardless of the optical thickness e
of disturbances, the medium is thermally 0 S iy

stable. The only unstable mode exhibits i

.. . o Fig. 3. The wave number dependence
the gravitational l.nstak.nhty for large wave of the growth rate under the
lengths as shown in Fig. 3, but the growth Compton scattering.
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rate is small. The thermal effect lengthens the critical wave length.

§4. Possible models of thermal instability in the expanding universe

In the ordinary thermal history, thermal instability cannot occur because
of the Compton scattering. We shall consider the turbulent universe in
which thermal instability may possibly occur. This state exists after the
recombination, when the temperature of the matter and that of the radiation
split off from each other. Now, as the heat capacity of matter is much
smaller than that of the radiation field so that the matter temperature alone
is possibly increased by the dissipation of the turbulent kinetic energy.

If the matter is heated up, the thermal history will proceed in three
steps: At the first step, the mechanical energy gain suppresses the energy
loss, so that the matter temperature continues to increase with the larger
value than the radiative temperature. At this time, the matter is thermally
stable, for the mechanical heating rate per unit mass is almost independent
of density and temperature.’” At the second step, the rate of the mechanical
heating is balanced with that of energy loss, and the matter temperature
attains the maximum value. The radiative cooling results from the relax-
ation between the matter temperature and the radiative one. At the third
step, the energy loss dominates the heating so that the matter temperature
declines rapidly. This third step is not suitable for thermal instability, because
the unperturbed state passes through the thermal unstable state before fluctu-
ations sufficiently grow. After all, thermal instability may suitably occur at
the second step. From now on, we consider the thermal instability under
the condition that A5=0.

It is to be noted that the radiative temperature is increased by the
energy gain of radiation field from the thermal field in the process of thermal
instability, but the change is very small for the radiation field because the
number of photons is much larger than that of particles. Therefore, we can
reasonably assume that the radiation temperature is determined by the adiabatic
expansion.

Next, we consider the radiative energy exchange between matter and
radiation. The radiative processes are composed of the Compton scattering,
free-bound and bound-bound transitions, whose detailed expressions are given
in Appendix B. It is important that they depend on the ionization degree,
determined by the photoelectric and collisional processes.? However, the
ionizational process is almost due to collision, because the matter is heated
up by the mechanical processes after the epoch of the decoupling. In this
case, the mean-free time of photons and the characteristic time of the
ionizational change are much shorter than that of radiative energy loss, over
the wide range of matter temperatures. Therefore, in this situation, L, and
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L; appeared in thermodynamical modes are given by

Ly=pR} and L=y R¥, (4-1)

where

po= B ) (B — i —IF) + (k- 2)?

wy (& +od) + (ks Jve- 1) ° - (4-2)

This is shown in (A-34) in Appendix A. Here, 7 means the reduction
factor due to the optical thickness of o=kt /(ks/ve-2): If £,>1 (the optically
thick case), n~ (& —xf —9,) /7¥, on the other hand, if 7,<<1 (the transparent
case), o~1. And J¥ exhibits the influence of photo-ionization whether the
ionization is determined by collisional process or not.

Next, we show the curves of constant R¥ in the 9— T plane in Fig.
4, where R is the number density of nucleons. At higher temperatures, the
Compton scattering is most efficient, then free-bound and Ly-a of singly
ionized helium, free-bound and Ly-a of hydrogen become efficient in order
of decreasing temperature® As the photons of Ly-a are optically thick,
Ly-a does not contribute to energy loss and is neglected in Fig. 4: Even
if they are optically thick, however, the photons of Ly-a can diffuse out by
incoherent scattering® or leak out by their conversion into 2 photons.*” But
these processes have little contribution to energy-loss rate.

Then, in Fig. 5, we exhibit the free-bound absorption cross section.

7 — . . logx
log Rp -I15F
log7 6lsjals 2 i
6r Cojmption
freedbound (Hell) -20r
4+ free~bound (H) A -25¢
3 L Il 1 L 1
6 4 2 6 -2 -4 -¢ 30 . ' ‘
log % 4 5 6 7
logT
Fig. 4. The equi-energy-loss curves in the
lon®—log T plane under the radiative Fig. 5. The absorption coefficients for bound-
processes of the Compton scattering and free and Ly-o of hydrogen and helium.
free-bound. The matter is composed of The ratio of numbers of hydrogen and

hydrogen (90%) and helium (10%). helium is 9 : 1.
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The wave number for a mass of M is given by 0.954x 107V (M/Mp) ™",
and so the range of matter temperature exists where free-bound photons are
optically thin for fluctuations with larger masses than 10°Mo.

For the cases of disturbances with the scales corresponding to the masses
of 102Me, 10°Ms and 10°Mcg, we show curves of constant 7 R¢* values and
the growth rate of the condensation mode in the %—7 plane in Fig. 6.
Thermal instability occurs in the two regions in the 9t—7" plane, one due to
free-bound processes of singly ionized helium, and the other to that of hydrogen.
For, at the state where the effect of ionizational change can be neglected,
the free-bound process satisfies the following relation:

7 - S
logT N

-
logT

ol

ol

6 4 2 o -2 -4 -6

_ © log %

Fig. 6. The equi-energy-loss curves and the equi-growth-rate curves in the logR—log T’
plane for the cases of the fluctuations with the scales of 1012Mo, 10° M and 10°MoE.
The solid line is the equi-growth-rate curve and the dotted line the equi-energy loss.
The chain lines show the constant ratio of the wave number to the Jeans wave number
for the given masses.
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Ly=—2L;. (4-3)

The condensation mode is unstable if L, is positive, which occurs at the state
where

IF (i + o) <(—§;—x>z . (4-4)
Therefore, the unstable region is wider for fluctuations with smaller mass,
as shown in Fig. 6.

Now the unstable region is determined by the three conditions:

1) The first condition is that the free-bound energy loss dominates over that
of the Compton scattering. This is satisfied after the epoch of =10,
which we denote #, hereafter.

2) The second is inequality (4-4).

3) The third is that ionizational degree is larger than 0.9, for it is necessary
that the ionizational change occurs quickly and the ionizational mode is
isolated.

Now, we shall discuss the mass range where the fluctuations can be
amplified by thermal instability and proceed further to condense by gravitational
instability. To do so, we shall derive the value of the growth rate, by which
density fluctuations can attain an amplitude (8p/p)¢ enough to condense gravita-
tionally within the cosmic age. With due regard to the nonlinear acceleration,
(80/0)¢ must be larger than 107%;, where #;(measured in year) is the epoch
when the gravitational instability occurs. For example, if #; is 10° years,
(0p/p)c is necessarily greater than 107°. The fluctuation, with the initial
amplitude (0o/p), at the epoch of #,, attains the amplitude of 107%#; at ¢
(given by the following equation) after it is amplified by the thermal insta-
bility with the growth rate n,

logt,= "72—:(_“31/1/;6“)[:71 log ——1-/:—36:— log(—af—) ~—1%5_4~:| . (4-5)

If n>107% the fluctuations with extremely small amplitude, for example 107%
~107*, can sufficiently grow to (dp/p)¢ within a period comparable to .

Now, the upper limit of the mass range turns out to be 10**M, because
the larger masses than 10“Mg do not provide a state of »>>10% It is also
unlikely that the condensation with a mass of 102My originates directly
from thermal instability. The reason is that although the state with the
largest growth rate is gravitationally unstable for 10**Mg, density fluctuations
are relatively small because |I'|, the ratio of the amplitude of pressure to
that of density, is very large.

The lower limit may be 10°My: For, lower masses than 10’Mp provide
almost the same growth rate of thermal instability but are less unstable
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gravitationally. As the unperturbed state cools down to the thermally
stable state after the fluctuations are amplified by thermal instability, the
fluctuations with smaller wave length undergo more strongly the adiabatic
damping by the expansion of the universe. Therefore, only the fluctuations
with larger masses than 10°M can survive.

After all, the most probable mass of grobule [which originates in
thermal instability and proceeds further to condense gravitationally is found
to be 10°My to 10°My. The remaining problem is the possibility that the
thermal instability occurs in the universe, that is, how the matter tempera-
ture can be heated up to a higher temperature than 10*°K at the epoch
after #,. We shall discuss the heating due to turbulence and cosmic rays.

Before the recombination of hydrogen, the sound velocity ¢ is given by
(R T/me)*?(n,/n.) "2, where n, and n, are the number density of photons and
particles, since matter and radiation are strongly coupled. But this ¢ changes
to ¢s= (kT/mwx)"* by the recombination of hydrogen, and the large reduction
of the sound velocity by a factor of 5x10® will turn the primordial turbulence
from subsonic to supersonic.*? Therefore, the shock dissipation of turbulence
can increase the matter temperature, provided that the primordial turbulence
is strong enough.

If the turbulent dissipation heats up the matter quickly before £=1¢, the
decay of turbulence will proceed under the condition that turbulent velocity
is approximately equal to the sound velocity. Therefore

Pm:Pc and Umz Ut, (4.6)

where Pn., P, are the material and turbulent pressures and U., U, are the
internal energy of matter and turbulence respectively.®® Then, the total
energy of matter and turbulence is diminished by the energy loss of the
Compton scattering because the epoch is prior to .

d | d (1N_ _  qupm ,

where

o TRA 1 535107,

muahi,C

From Egs. (4-6) and (4:7), we derive the equation on T

As we consider the case that the heated-up temperature 7" is greater
than 7,, we have
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Fo(2) emn]()"1],
0 0

where the suffix 0 denotes the initial value, and X,= (c, T,6/5k)t,=3.68 X 107%
Tyts. As X, is greater than 4x10° before the time of t,, matter tempera-
ture and turbulent energy decrease very rapidly by the Compton scattering.
Then, in order that the universe passes through the state where thermal
instability occurs, the turbulent energy is required to be transformed in
different form and be preserved enough to heat up the matter temperature
to 10°°K after the epoch #. Such a possibility may be provided, if the
magnetic field exists in the universe. Now, the magnetic and cosmic-ray
energies decrease proportionally to ¢** with the cosmic expansion, while the
turbulent energy decreases proportionally to ¢*%. So, the turbulent energy
may well be preserved in the magnetic field and/or in the cosmic-ray particles
until 107 years.

At the early epoch when the turbulent energy dominates over the mag-
netic one, the turbulent eddies entangle the magnetic lines of force. Once
the magnetic energy becomes superior to the turbulent one, the stretching of
magnetic lines of force accelerates the turbulent velocity v, so that v, becomes
nearly equal to c¢x (Alfven velocity). Then the maximum size I, where the
acceleration occurs whithin the cosmic age z is given by Ia=cat, and the
mass M, with the size of I, is 3.35%10"(H,/107)*My, where H, is the
magnetic intensity at present. If H, is 107", M,=3.35x 10"M.

Cosmic ray particles are likely to be generated by the abrupt stretching
of magnetic lines of force due to the shock turbulence after the recombina-
tion of hydrogen before the turbulence decays. In this way a substantial
fraction of turbulent energy can be transformed in the magnetic and cosmic-
ray energies. Then, while the magnetic eddies of smaller scales and the
cosmic ray particles of lower energies are subject to dissipation by counter-
winding and ionization loss in relatively short time (10° years), the magnetic
eddies of larger scales and the relativistic cosmic rays (R.C. R.) of energy
higher than 10 GeV/particle can survive until 107 years or more. In its
earlier stages, the Compton loss is so effective that the matter temperature
is hardly raised by the cosmic-ray heating, but then as the universe is
diluted the heating due to R.C.R. balances with the cooling due to the
Compton scattering at higher temperatures and the matter is re-ionized. The
thermal history depends strongly on the fraction ¢ of R.C.R. per proton. If
1.6 X107 >e> 1.0X107%, the temperature evolves into the region of the
boundfree cooling and is kept constant between 1.6x10%°K to 33X 10*°K®®
In this case, the thermal instability operates, and grobules will be formed.
Meanwhile, counter-winding of large magnetic eddies sets grobules in random
motion which produces the required statistical density fluctuation for the
Jeans volume containing 10"?Mg.
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§5. Conclusion

Through the ordinary history of the universe, the Compton scattering is
the most effective process of energy exchange between matter and radiation,
so that thermal instability does not occur, but only gravitational instability
occurs. However, if the universe is heated up to the ionized state after the
recombination stage, there can be the state in which the free-bound photons
‘can escape transparently giving rise to the energy loss more than that of the
Compton scattering after the epoch # of =10, which corresponds to 107 years
for the flat model of the universe. This state is thermally unstable and the
growth rate is so large that very small fluctuations can be excited to an
amplitude necessary for the formation of condensation by gravitational insta-
bility within 10 years. The most probable mass of a grobule resulting from
the thermal instability is found to be 10°Mp.

The following process is probable to heat up the matter to a reionized
state after #,. When the universe changes from the plasma state to the
state of neutral hydrogen, the large reduction of the sound velocity by a
factor of 5x10% turns the primordial turbulence from subsonic to supersonic
and eddies generates shocks. If the generated shocks heat up the matter
rapidly before #;, not only does the heated matter cool down very quickly by
the Compton scattering, but also the turbulent energy decays rapidly. But,
if the magnetic field exists in sufficient strength, then the energy is preserved
without much exhaustion in the form of twisted magnetic field and in cosmic
rays. After the Compton scattering becomes less effective, the energy thus
stored will be released with the time scale of 10" years for the eddy which
includes a mass of 10°My. The heating due to cosmic rays overcomes the
energy loss of the Compton scattering. ‘

The grobules with 10°Mg originated by thermal instability aggregates
into galaxies: The velocity of M.H.D. eddies containing the grobules is 10°
km/sec at 107 years, if the magnetic field extraporated to the present amounts
to 107" gauss. Thereupon, the Jeans mass is 10’Mp, provided that the
random velocity of grobules is provided by the velocity of M.H.D. turbulent

eddies.

Appendix A
—— The general characteristic equation——

In §2, we derive the 6th order characteristic equation (2-42);

nt+an—1
_ et (1—=1/9Pr+ A/ Pan+ /1) {Q+P)&— 1+ P8}
- 7‘1"‘81‘ ’

(A-1)
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where P,, Pr, £, and 8, are given by Egs. (2-43) ~(2-46). We shall now
cite a few instances for &L,, Pr, 8, and Zr. ‘

i) The effects of ionizational change and optical thickness being neglected;

gbﬂ:gD,Tzo’ (AZ)
L=R¥ and {,=R¥. , (A-3)
ii) The ionizational effect only being neglected,
_ 4(x +at) R _
S Gl e (e i)+ afor ) ¢ @-9
_ 4(ky +03") R¥ .
Fr (n/c+&) (nfc+x¥+a5) + (ks/ve-x)® ¢’ (A-5)
Lo=(1—rn) R} (A-6)
and
L=0—rpRF. (A-7)

P,r is increasing as optical depth becomes thicker, on the other hand,
,.r is decreasing.

iii) Fluctuations being completely transparent for radiations and ionizational
effect only working,

P, = P,=0, (A-8)

Q= R*+ (1+%)J;‘ (A-9)
and

Lr=R¥+ <1+%&)J;‘. (A-10)

~ Next, we shall give the exact expression of the characteristic equation (A-1)
for the case that the heating rate is independent of p*, 7™ and x*. (A-1)
is rewritten as follows:

nz—i-an—l:——xz-%%%%—. (A-11)

P(n,z) and Q(n,z) are the 4th order algebraic functions of # and are given
by

P(n, x) =n*+ A n®+ Aen®+ Asn+ A, (A-12)
and
Q(n, x) =n*+Bn*+ Byn*+Bsn+B,, (A-13)
where
_ g* '
Ai=cQrf+oF) +LF—=L, (A-14)

/)
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A2—C "5':(”5':‘*‘05“)‘*‘(6@ >2+c<2E5"+66") (..C’r"—— J’T)
Ut

/)
—Cke' «gzr‘*‘jrcg, “ef*(g J—i{—;’ (A-15)
Aa—-{ 2(ke — ") (&6 + a0 )+(CkJ x>2—0(2m*+a — K ) Ji +cd¥ Iy }ERT
f
+ {627:5" (R + o) + ( {(’jJ x)
(2R 0 TE e (2 + o — i — 'q;'l‘}(ﬂ*
~ow o)+ (L LI o rangr e, (A-16)
A4=—;—[{62(I£o k) R +o) + (Ck«f )} (9% — RETH)
* % CkJ 2 / *
- TJT{C/co(/ro-l-o)—l—( >}+C (& +of)IF(R¥I.— R, 1)]
f
(A-17)
and
Bi=c(2rf+ap) +LE=LE {f , (A-18)
B,=ck¢ (& + a8 )+<CkJ >2+c(225k+¢£3")<°£¥_°£:— JI)
Ut ‘ T 0
e +an (R -2 ) (R -2)
+ 0',‘(J;‘—J;*)~—%(o£‘* L) = fR' (A-19)
_ q*
e+ (B (25 s
X{ ( gx J*)_ T (%__ 9%%‘—3%;“)+ g%;"ﬂ;‘—fRMj}
o T T
{c o (ki +o6) +c (2 + o —lco) Ji + J*‘q }_9_2?‘_;&
—I—{C(Zm +o¥—k¥—JI9F) 'g%’ L — (25 d(i")J?‘}iq—T;—ﬁ
— (o) I 9’ (A-20)

'B4=-}0-[{c2<z:—x;f><x o)+ (Lo @iucor- 95— (R R2Y}

k%3
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I T it Gt o) + (Do) | — e+ o) T (RE 55~ R29)

O o) I I RE R~ RUSIE=ID} | (A-21)

Then, to observe the characteristic behaviors of the eigenvalues, we give the
eigenvalues at the limiting wave numbers.

For =0, the three of six roots are obtained explicitly, corresponding to

the growth rates of free fall, free expansion and the damping rate of radiational
mode;

and

ne= 1/1+ (—‘2’—)2 —-12'-, Ne= — 1/1+<—§—)2 ~-g— (A-22)

= —c(&f +of). (A-23)

The other three are the roots of the following third-order equation;

1+ p1n*+ pan+ ps =0, (A-24)
where . ,
pi=cEt - LF— {f“ , | (A-25)
P —/co)ﬁRT—l—con*“CxS"Jﬂ ¢ ;*g;'
+_;_<Jm;—3&g%¢) ~-;—J;=J—; (A-26)
and

P3:_;—[C(K0 —r) (JFER J*SR ) —cr¥
—cIF(IER,.— I, T)]. (A-27)

These roots represents the modes of thermal, ionizational and radiative change,

and

they are coupled with each other.
For x=oco, however, we have the explicit expression of the six roots;

1 (ﬁ—ﬁ_ 1 j)

He=— 5 "
* —\2 _ —
—%/(I’ - L -;—sz) *%{ERLCJ’T"~J;*) —IH(RF—RY) — 9% %},
| (A-28)
__ 1 (LF-rF 1
mTTT ( T 6 jﬁ)

+%1/<.L’T—;.L’p _%@:) ..%{ga;(cq;_(g:),—j,'t(.gz;uga:)_—ﬂ;‘i’;},
(A-29)
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*x__ x
ns=——%—<1£—1—7—‘—-£~—£?—a)ixi : (A-30)
and :
— —% 1 & cky .
ne=—\ks +—00 | = xi, (A-31)
2 Ut

where 7., and 7 represent. the condensation mode and the jonization mode,
and then 7, and 7, indicate the growth rate and frequency of the sound mode
and the radiative mode.

One of the cases that the thermodynamical modes are isolated from the
others is given at the state where JF/6, ck3>R¢ as appeared in §4. In this
case, the three modes can be explicitly expressed as follows:

For the ionization mode,

(A-32)

and for the radiative modes the two conjugate eigenvalues are given by

nr=—c<E§"+—'12°*—>ic]/<—%Qt)2~<%x)2. (A-33)

Then the eigenvalues of the thermodynamical modes are given by the
roots. of the following equation:

: ntm(RI+RE) /1
n+mn R¥ ’

(A-34)

n+an—1=—=zx

where

— & +a8) & —wf =IF) + (ks /ve-x)® )
K K (Eak +05k) + (k.r/‘vf‘x)2 ' (A 35)

(A-34) corresponds to the case of (4-1). Here, it must be noted that in
this case the thermodynamical modes include the ionizational effect only through

JIr.

Appendix B

Ionization process and the energy loss by free-bound process

We assume that the matter of the universe is composed of hydrogen and
helium in the ratio of 9:1 in numbers. The numbers of hydrogen and helium
are related to the density as follows:

nH=0.694(J’—) and nHe=0.086(-p—) . | (B-1)

Mu mu

As the energy loss due to neutral helium is small, we consider only the
recombination processes to neutral hydrogen H and singly-ionized helium



Thermal Instability in the Expanding Universe 145

Hell. We denote the ionization degrees of H and Hell as z and y, and the
ionization potentials as ¥z and X, respectively.

a) lIonization process

We shall give only ionization function 4. For the case of H, we have

Iu= 0;294 [A=2) (Ruip+7Cip) =2 (Rp+m.Cp)].  (B-2)
H
Here,

— 9 “ dﬁr R
R,,=7.84%10 Sa’-———»—& @1y (B-3)
Rpy=3.25%10"E,(8) T2, (B-4)
Ci,=123X107%¢7 e T2, (B-5)
Crn=3.20X10"% 7", (B-6)

where R and C mean the photoelectric process and the collisional one respec-
tively,

0,=%u/kT,, 6=u4/kET and E1(0)=S:z°‘e"dz.

The case of Hell, it is different from the case of H in that the free
electrons are supplied from fully-ionized hydrogens. The ionization function
is given by

Fuar =20 [(1=3) (Rua+ 71 Coe) ~ (R +muCe) 1. (B-7)

H

Here,
co dﬁ’
g%a=1.25><10“8 —_—, B-8
' o 6,(c"—1) 8
Rar=5.20 X103 E, (¢) T3, (B-9)
Cia=9.80X107¢ e T2, (B-10)
Car=4.04%1072¢ 1 T2, (B-11)
The number of electron 7, is given by
B {0.694x(p/mg) for H, (B-12)
— 1€0.77+0.086y) (o/mu) for Hell (B-12)
Now, we show only J; among the quantities of ionization change.
_ {4.76 X 10°(1—2)0°E,(86,) for H, (B-13)
TL02Xx10°(1—y) 0 E(6)  for Hell (B-13)



146 : M. Kondo, Y. Sofue and W. Unno

b) The energy loss due to free-bound processes

For simplicity, the function R (unnormalized) of the radiative energy loss
due to free-bound processes is exhibited;

R=—gJ+e, (B-14)

where
4.76 X 10°(1—x) for H, (B-15)
T {1.02 % 105(1—y) for Hell, (B-15)
(2% /c*h®) 07 e o for H, (B-16)
B {(ZX?M[/ Czhs)ﬂﬁ’le”": for Hell, (B-16")

and

7.85 X 10%px? T 712 for H, (B-17)
N {1.73 X 10%py(1+0.112y) T¥* for Hell. (B-17")

From (B-17) and (B-17"), we obtain the following relation,

Rr=—"Z=-R,. (B-18)
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