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Abstract

Grand rotation curves (GRC) within ∼ 400 kpc of M 31 and the Milky Way were constructed
by combining disk rotation velocities and radial velocities of satellite galaxies and glob-
ular clusters. The GRC for the Milky Way was revised using the most recent solar rotation
velocity. The derived GRCs were deconvolved into a de Vaucouleurs bulge, exponential
disk, and a dark halo with a Navarro–Frenk–White (NFW) density profile by least-χ2 fit-
ting. Comparison of the best-fitting parameters revealed similarities between the disks
and bulges of the two galaxies, whereas the dark-halo mass of M 31 was found to be
twice that of the Galaxy. We show that the NFW model may be a realistic approximation
of the observed dark halos in these two giant spirals.

Key words: Galaxy: fundamental parameters — Galaxy: structure — galaxies: dark matter — galaxies: individual
(M 31) — galaxies: rotation curve

1 Introduction

The rotation curve of the Andromeda galaxy M 31
(NGC 224) has been obtained in detail and is used for
determining the mass distribution in the disk and dark halo
(Sofue et al. 1999; Carignan et al. 2006; Chemin et al.
2009; Corbelli et al. 2010). The dark-halo mass beyond the
disk has been derived using kinematics of satellite galaxies
(e.g., Metz et al. 2007; van der Marel & Guhathakurta
2008; Tollerud et al. 2012). Globular clusters are also used
extensively for the mass determination of the dark halo
(Veljanovski et al. 2014) as well as for inner kinematics
(Galleti et al. 2004). In our recent work on the Milky Way
Galaxy, we constructed a running averaged rotation curve
for a wide region from the Galactic Center to the outermost
dark halo, which we called the grand (or pseudo) rotation
curve (hereafter, GRC; Sofue 2012, 2013). In the present
paper, we revise the GRC by adopting the most recent value
of the solar rotation velocity, V0 = 238 km s−1, from VERA
observations (Honma et al. 2012).

We apply a common method to construct GRCs for
M 31 and the Milky Way by combining disk rotation curves
and radial velocities of satellite galaxies and outer globular

clusters. We deconvolve the GRCs into bulge, disk, and
dark halo, and determine the dynamical parameters. We
compare the results for M 31 and the Milky Way, and dis-
cuss the similarities between the two galaxies. It is empha-
sized that the NFW model indeed works in largely extended
dark halos of real galaxies.

2 Grand rotation curves

2.1 M 31

The rotation curve of the disk of M 31 has been obtained
by many authors using H I, CO, and Hα line kinematical
data as listed in table 1. For the disk region, we simply
adopt the averaged rotation velocity V(R) as a function
of radius R from these data. For the halo region beyond
the disk, we employ kinematics of non-coplanar objects
orbiting M 31, which include satellite galaxies and globular
clusters (table 1). We use a distance to M 31 of 770 kpc,
and a systemic velocity of 300 km s−1 (Courteau & van
den Bergh 1999).

We assume that the distribution of non-coplanar objects
is spherical around M 31 and the velocity vectors are
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Table 1. References to the data in figure 1.

Rectangles at R < 10 kpc Disk RC (CO) Loinard, Allen, and Lequeux (1995)
Gray circles at R < 32 kpc Ibid (combi: H I, CO, opt) Sofue et al. (1981, 1999)
Gray open circles linked by line Ibid (H I) Carignan et al. (2006)
Black–gray circles linked by line Ibid (H I, CO) Chemin, Carignan, and Foster (2009)
Gray reverse triangles linked by line Ibid (H I) Corbelli et al. (2010)

Rectangles at R > 40 kpc Galaxies around M 31 Metz, Kroupa, and Jerjen (2007)
Triangles with bars Ibid van der Marel and Guhathakurta (2008)
Reverse triangle at R > 40 kpc Ibid Tollerud et al. (2012)
Open circles with bars Globular clusters Veljanovski et al. (2014)

random. We define a pseudo rotation velocity, V, as the
velocity that yields the enclosed mass M(R) within a radius
R from the galaxy’s center by

M(R) = V2 R/G, (1)

where G is the gravitational constant. The pseudo rota-
tion velocity is here replaced by the virial velocity for an
ensemble of particles orbiting around the center of mass
in random orbits (Limber & Mathews 1960; Bahcall &
Tremaine 1981). If the orbits are random, the velocity is
evaluated by

V =
√

3
〈
v2

z

〉
, (2)

where vz is the line-of-sight velocity of each object
(Limber & Mathews 1960), and 〈v2

z 〉 is the mean of the
squares of vz in the ensemble. The factor

√
3 was multi-

plied for correction for the degree of freedom of random
motion (Limber & Mathews 1960).

If the orbits are not random, the above estimation may
be corrected for the orbital shapes by

V = C
√

3
〈
v2

z

〉
. (3)

Here, the coefficient C is a factor ranging from
√

3π/8 ∼
0.7 for radial orbits to 3π/8 ∼ 1.2 for circular orbits
(Bahcall & Tremaine 1981), depending on the shapes of
the orbits as well as on the assumed potential and distribu-
tion function of objects (Evans et al. 2003).

Since it is rather the potential that we want to determine
in this paper, and the other factors are unknown, we here
assume that C = 1. It should be mentioned that the obtained
result in this paper depends on this correction factor in
the sense that the dark-halo mass is proporional to C2.
Namely, the mass could be changed by a factor of ∼ 2.
Hence, the given errors in this paper are statistical values,
not considering the systematic effects of the assumption.

For objects whose three-dimensional coordinates are
unknown, the distance from M 31’s center R is related to
the projected distance rproj by

R = π

2
rproj. (4)

We adopt the thus-calculated pseudo rotation velocity as
the rotation velocity.

If there exists systematic rotation, as observed for the
globular clusters around M 31 (Veljanovski et al. 2014), a
correction is necessary, as described in the Appendix. We
assume that the rotation axis is parallel to the disk’s rotation
axis, i = 77◦, so that the correction is small and equation (3)
also holds for the globular cluster system.

Figure 1 shows the compiled rotation velocities for the
disk, and the pseudo rotation velocities of satellites and
globular clusters within a radius of 500 kpc from M 31.
Using these velocities, we calculate the running averaged

Fig. 1. Rotation velocities of the disk and pseudo rotation velocities
of non-coplanar objects in M 31 in (a) linear and (b) semi-logarithmic
scalings. References to the data are listed in table 1.

 by guest on A
ugust 12, 2015

http://pasj.oxfordjournals.org/
D

ow
nloaded from

 

http://pasj.oxfordjournals.org/


75-3 Publications of the Astronomical Society of Japan (2015), Vol. 67, No. 4

Fig. 2. GRC of M 31, showing running averaged values of pseudo rota-
tion velocities in (a) linear and (b) logarithmic scalings. Long and short
bars represent modified standard deviations and errors, respectively.

velocities in each bin at logarithmic intervals between R
and 1.2 R with R starting from R = 0.1 kpc by applying the
Gaussian running averaging procedure described in Sofue
(2012, 2013). Note that we here use the root of the mean,√

〈v2
z 〉, as the pseudo rotation velocity, because the squared

velocity is more directly related to the virial mass according
to equation (3), whereas we took 〈vz〉 in the earlier work.

The pseudo rotation velocities are plotted in figure 2,
where long bars represent modified standard deviations
among the data used in each bin, and short bars are mod-
ified standard errors. Here, the modified deviation and
error are defined by sd = δV � δV2/2V = sd:V2/2V and
se = se:V2/2V, recalling the propagation of the deviation
(error) of V2 and V by the derivative relation δV2 = 2VδV.
Here, sd:V2 = [〈(3v2

z − V2)2〉]1/2 and se:V2 = sd:V2/N1/2 are
the standard deviation and error around V2 in each radius
bin, respectively, and N is the number of data points in the
bin.

We employed these definitions for the same reason that
we chose the square value, v2

z , as the independent variable,
instead of the linear value, vz. We call the thus-obtained
plot of V the grand rotation curve (GRC).

2.2 The Milky Way

We revise the GRC of the Milky Way obtained in our ear-
lier work (Sofue 2013) by adopting the most recently deter-
mined value of the solar rotation velocity, V0 = 238 km s−1

Fig. 3. New GRC of the Milky Way in (a) linear and (b) semi-logarithmic
scalings. Gray dots represent the data for individual objects, and the
gray line with triangles shows our earlier GRC (Sofue 2012, 2013).

at R0 = 8 kpc, from VERA observations (Honma et al.
2012) in place of 200 km s−1 in the earlier paper. We also
adopt the same correction factor for velocity as for M 31,

V =
√

3〈v2
z 〉, in place of

√
2〈vz〉. In the earlier work, the

degree of freedom of motion was assumed to be 2, consid-
ering that each particle has a transverse velocity that is the
same as the radial velocity.

The revised GRC is shown in figure 3, where the data
used are superposed by gray dots, among which a few
objects with vz ∼ 400 km s−1 have been removed from
the analysis. The new GRC exhibits higher velocities than
our earlier result, shown by the gray line with triangles.
The higher disk velocities are due to the use of the larger
value of V0 = 238 km s−1, as well as to higher velocities for
non-coplanar objects because of the use of the correction of√

3 instead of
√

2. Also, the presently employed average
of the squared velocity v2

z leads to a slightly higher mean
velocity compared to the linear mean of vz in the previous
work.

In figure 4 we compare the new GRC of the Milky
Way with M 31. The two GRCs show a remarkable sim-
ilarity in the halo regions, indicating similar dark-matter
distributions.

2.3 Characteristics of the GRC

The general characteristics of the GRCs obtained for M 31
and the Galaxy may be summarized as follows:
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Fig. 4. New GRC of the Milky Way (solid line) compared with that of
M 31 (gray line) in (a) logarithmic and (b) linear scalings. The bars are
modified standard errors.

(i) The rotation curves in the bulges look typical in the plot
up to 40 kpc, but the enlarged curves in the logarithmic
presentation show that they have inner structures. In
particular, the innermost curve of the Milky Way was
shown to be composed of multiple bulges with steeper
concentrations than the de Vaucouleurs law predicts
(Sofue 2013).

(ii) The disk rotation curves are nearly flat, showing broad
maxima at R ∼ 10–20 kpc in both galaxies.

(iii) Beyond R ∼ 30 kpc the rotation velocity declines
smoothly until the edge of the dark halo. The slope
is, however, gentler than the Keplerian law predicts,
implying that the halo cannot be represented by
Plummer- or exponential-type potentials that require
a steeper mass concentration. It will be shown in the
next section that the NFW model is a good approxi-
mation to represent the observed GRCs in the halos.

3 Deconvolution of GRC into bulge, disk,

and dark halo

We assume that the GRCs shown in figures 2 and 3 are
composed of bulge, disk, and dark-halo contributions as

V(R)2 = Vb(R)2 + Vd(R)2 + Vh(R)2, (5)

where V(R), Vb(R), Vd(R), and Vh(R) are the rotation
velocity at galacto-centric distance R, and those for the
bulge, disk, and dark halo, respectively. By fitting the GRC

with a model rotation curve using the least-χ2 method,
following the method presented by Sofue (2012, 2013), we
searched for the best-fitting parameters of the bulge, disk,
and dark halo.

3.1 Bulge

The bulge is assumed to have a de Vaucouleurs (1958)
profile for the surface mass density as

�b(r ) = �beexp[−κ{(r/ab)1/4 − 1}], (6)

where κ = 7.6695 and �be is the surface mass density at the
half-mass scale radius R = ab. The total mass is calculated
by

Mb = 2π

∫ ∞

0
r�b(r )dr = ηa2

b�be, (7)

with η = 22.665 being a dimensionless constant. The
circular rotation velocity is then given by

Vb(R) =
√

GMb(R)/R. (8)

In the fitting procedure, Mb and ab are taken as the two
free parameters. The bulge of our Galaxy was shown to be
composed of multiple bulges with exponential density pro-
files, whereas the de Vaucouleurs law rather fails to repro-
duce the innermost rotation curve (Sofue 2013). Hence, the
present analysis will not be accurate enough for discussion
of the bulge in the Milky Way.

3.2 Disk

The galactic disk is approximated by an exponential disk,
whose surface mass density is expressed as

�d(R) = �0exp (−R/ad) , (9)

where �0 is the central value and ad is the scale radius. The
total mass of the exponential disk is given by

Md =
∫ ∞

0
2πr�ddr = 2π�0a2

d . (10)

The rotation curve for a thin exponential disk is expressed
by

Vd(R) =
√

GMd/adD(X), (11)

where X = R/ad, and D(X) is the expression obtained by
Freeman (1970) for a flat exponential disk. As the two free
parameters we chose Md and ad.
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Fig. 5. Least-χ2 fit of the GRC of M 31 by the bulge, disk, and dark-halo
components in (a) linear and (b) logarithmic scalings.

Fig. 6. Same as figure 5, but for the revised new GRC of the Milky Way
using the same procedure as for M 31.

3.3 Dark halo

For the dark halo, three mass models have so far been pro-
posed: the semi-isothermal (Begeman et al. 1991), NFW
(Navarro et al. 1996), and Burkert (1996) models. The out-
ermost rotation curves in figures 5 and 6 are not flat at
all, so the isothermal model is not a good approximation.
Since the NFW and Burkert models are essentially the same

except for the very central part, we here adopt the NFW
profile. The NFW density profile is expressed as

ρ(R) = ρ0/[X (1 + X)2], (12)

where X = R/h, and ρ0 and h are the representative (scale)
density and scale radius of the dark halo, respectively. In
the fitting procedure, we chose ρ0 and h as the two free
parameters.

The enclosed mass within radius R is given by

Mh(R) = 4πρ0 h3 {
ln(1 + X) − X/(1 + X)

}
. (13)

The circular rotation velocity is given by

Vh(R) =
√

GMh(R)/R. (14)

3.4 Fitting result by the least-χ2 method

Applying the fitting method described in Sofue (2012) to
the GRC of M 31 and the Galaxy, we searched for the best-
fitting parameters of the bulge, disk, and dark halo. The
free parameters are Mb, ab, Md, ad, ρ0, and h. Fitting radii
were taken to be R1 = 0 to R2 = 20 kpc for the bulge,
0–40 kpc for disk, and 1–385 kpc for the dark halo. The
outer boundary for the halo fitting corresponds to the half
distance between the two galaxies. Figures 5 and 6 show the
thus-obtained fitting results compared with the GRCs used.
Table 2 shows the best-fitting parameters for the individual
mass components.

Figures 7 and 8 show the behaviors of χ2/N around
the least values, where χ is defined by χ2 = �[Vc(Ri )2 −
Vo(Ri )2]/s2

d , with “o” and “c” standing for the observed
and calculated values, respectively, and N is the number of
fitting points. For the dark halo we present the total dark
mass, Mh:385, corresponding to h and ρ0. Since the fitting
areas and N for the bulge, disk, and halo are different,
the minimum χ values differ between the components. The
error of each fitted parameter was evaluated as the range
that allows for an increase of the χ2 value by 10% above
the least value.

4 Discussion

4.1 Summary

We constructed GRCs of the Andromeda galaxy M 31 and
the Milky Way Galaxy for wide regions from the centers
to the dark-halo edges (figures 2 and 3). The GRC for the
Milky Way was revised by adopting the most recent solar
rotation velocity and applying the same method as for M 31.
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Table 2. The best-fitting dynamical parameters for M 31 and the Galaxy.

Component Parameter∗ M 31 Milky Way

Bulge ab (kpc) 1.35 ± 0.02 0.87 ± 0.07
Mb (1011 M�) 0.35 ± 0.004 0.25 ± 0.02

Disk ad (kpc) 5.28 ± 0.25 5.73 ± 1.23
Md (1011 M�) 1.26 ± 0.08 1.12 ± 0.40

NFW halo h (kpc) 34.6 ± 2.1 10.7 ± 2.9
ρ0 (10−3 M� pc−3) 2.23 ± 0.24 18.2 ± 7.4
ρ8kpc (10−3 M� pc−3) 6.36 ± 0.70 7.93 ± 3.24
= (in energy density: GeV cm−3) 0.24 ± 0.03 0.30 ± 0.12
Mh:200 (1011 M�) 12.3 ± 2.6 5.7 ± 5.1
Mh:385 (1011 M�) 18.3 ± 3.9 7.3 ± 6.7

Total mass Mtot:200 (1011 M�) 13.9 ± 2.6 7.0 ± 5.1
Mtot:385 (1011 M�) 19.9 ± 3.9 8.7 ± 5.1

Bulge χ2
b /N (R1–R2 kpc) 0.36 (0.0–20.0) 3.5 (0.0–20.0)

Disk χ2
d /N (R1–R2 kpc) 0.33 (0.0–40.0) 3.6 (0.0–40.0)

Halo χ2
h /N (R1–R2 kpc) 0.25 (0.0–385.0) 3.0 (0.0–385.0)

∗Mh:200, Mh:385, Mtot:200, and Mtot:385 are dark-halo and total masses within R = 200 and 385 kpc, respectively; ρ8kpc is
a local value at R = 8 kpc both in mass and energy densities; R1 and R2 are start and end radii for fitting.

Fig. 7. (a) Values of χ2/N for M 31 as functions of ab, ad, and h around
the least values marked by circles. From left to right: bulge, disk, and
dark halo, respectively. (b) Same as (a), but for the masses Mb, Md, and
Mh:385.

As stressed below, the dark halos of both galaxies are well
represented by the NFW density profiles.

By least-χ2 fitting to the obtained GRCs up to a radius
of 385 kpc (figures 5 and 6), we determined the galactic

Fig. 8. Same as figure 7, but for the Milky Way using the newly deter-
mined revised GRC.

parameters for the bulge, disk, and dark halo, as listed
in table 2. Our result for M 31 is consistent with those
obtained by other authors in recent years, as compared in
table 3 and figure 10.
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Table 3. Comparison of the derived dark-halo and total

masses of M 31 with other works in recent years.

Author Mass in 1011 M�

Evans et al. (2003) Mtot:100 7–10
Ibata et al. (2004) Mtot:125 7.5 ± 1.3
Geehan et al. (2006) Mh:200

∗ 7.1
Seigar, Barth, and Bullock (2008) Mh:200

∗ 7.3
Lee et al. (2008) Mtot:100 19.0 ± 1.3
Chemin, Carignan, and Foster (2009) Mh:160 10.0
Corbelli et al. (2010) Mh:200

∗ 13 ± 3
Watkins, Evans, and An (2010) Mtot:300 14 ± 4
van der Marel et al. (2012) Mtot:Vir(385) 17.2 ± 2.5
Tollerud et al. (2012) Mtot:139 8 ± 4
Tamm et al. (2012) Mh:200

∗ 11.3–12.7
Fardal et al. (2013) Mtot:200 20 ± 5
Veljanovski et al. (2014) Mh:200

∗ 12–16

This work (2015) Mh:200
∗ 12.3 ± 2.6

– Mh:385 18.3 ± 3.9
– Mtot:200 13.9 ± 2.6
– Mtot:385 19.9 ± 3.9
Average 〈Mh:200〉∗ 11 ± 3
Average 〈Mtot:100 − 385〉 14 ± 5

∗Dark matter mass within radius 200 kpc.

4.2 The reality of the NFW model

The fitting result in figures 5 and 6 proves that the NFW
profile (Navarro et al. 1996) can be a realistic approxima-
tion to represent the observed dark halos. We emphasize
that the analysis of GRCs covering regions as wide as sev-
eral hundred kpc around the galaxies is essential to identify
the right model from the three types of dark-halo models:
the isothermal model, predicting flat rotation in the out-
ermost region as Vrot ∝ const; the NFW model, predicting
slowly decreasing rotation as ∝(ln R/R)−1/2; and Plummer-
or exponential-type models, predicting Keplerian decrease
as ∝R−1/2 at large radii.

4.3 Similarities between the GRCs in M 31 and
the Milky Way and differences in the
dark-halo masses

In figure 4 the GRC of M 31 is compared with the revised
GRC of the Milky Way, and the fitting results are compared
in table 2. There is a remarkable similarity between the
rotation curves inside the disk regions as well as in the dark
halos in their shapes and amplitudes. However, the fitted
dark-halo mass of M 31 is about twice that of the Galaxy
and the parameters are also different, although the bulge
and disk parameters are similar between the two galaxies.
Figure 9 compares the fitted parameters of M 31 relative to
those of the Milky Way.

Fig. 9. Comparison of the dynamical parameters of M 31 (open circles)
relative to those of the Milky Way (filled circles). The quantities marked
with asterisks show the values relative to those of the Milky Way.

Fig. 10. Enclosed dark (filled) and total masses (open circles) within R of
M 31 obtained by the authors listed in table 3. Upper (dashed) and lower
(solid) lines show Mtot(R) and Mh(R), respectively, calculated using the
fitted parameters of M 31. Big diamonds on the calculated lines indicate
the present result.

4.4 Revised GRC of the Milky Way

The fitting accuracy in the Milky Way is not satisfactory,
particularly for the bulge component (figure 8), which is
mainly due to the fact that the Galactic bulge is com-
posed of multiple components, not well represented by the
de Vaucouleurs law (Sofue 2013). However, we used the
common model for M 31 in order to compare the global
structures of the two galaxies. Hence, the innermost struc-
ture of the Milky Way may not be taken seriously here,
while it does not affect the result for the disk and dark
halo.
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The scale radii and masses for the Milky Way determined
here are systematically greater than those obtained in our
previous work (Sofue 2013). This is because of the use
of the larger rotation velocity of the Sun, which causes a
significant increase in the disk rotation velocities, as well as
changing the revised correction factor of radial velocities of
non-coplanar objects.

4.5 Baryonic fraction

The ratio of the total mass of the bulge and disk to the dark-
matter mass, 
 = (Mb + Md)/Mh:385, is a measure of the
baryonic-to-dark-mass ratio. The values in table 2 yield a
ratio of 
 ∼ 0.087 for M 31, and 0.25 for the Galaxy. These
values may be compared with the cosmological value of
0.19 (= 4.5%/24%) from the WMAP observations (Spergel
et al. 2003). This implies that M 31 is dark-matter dominant
compared to the cosmological value, whereas the Galaxy is
baryon exceeded.

4.6 Relation to the Local Group

The systemic velocity of M 31 with respect to the Milky
Way of ∼ 100 km s−1 (Courteau & van den Bergh 1999)
can be translated to a statistically possible mutual velocity
by multiplying

√
3 to yield ∼ 170 km s−1, if we assume that

the two galaxies’ motions are random. In order for the
two galaxies to be bound, the reduced total mass of the
whole system is required to be greater than ∼ 5 × 1012 M�.
Since both M 31 and the Galaxy are far less massive, ∼ 3 ×
1012 M� in total, than this binding mass, there remain two
possibilities: either the Local Group contains dark mass as
massive as ∼ 2 × 1012 M�, or the two galaxy systems are
not gravitationally bound.

In the former case, our view that the Local Group can be
recognized as one system may not be changed. However, the
dark mass must be concentrated around the center of mass
of the Local Group, so that the M 31 and the Galaxy groups,
both associated with their own dark halos and embedded
satellite galaxies and globular clusters, are not tidally
disrupted.

In the latter possibility, we need no further assumption
of dark mass in the Local Group, but it is required that M 31
and the Galaxy and their satellite galaxies have been two
individual bound systems since formation. In fact, Sawa
and Fujimoto (2005) proposed a model in which dwarf
galaxies of the Local Group are bound either to M 31 or
the Milky Way, composing two individual bound groups,
and the two groups are orbiting around each other and
tidally interacting.

Appendix 1. Pseudo rotation velocity in a

pressure-supported rotating system

If there exists systematic rotation V rot in the halo, the
velocity V = |V | of a satellite galaxy and/or globular cluster
(hereafter, particle) is expressed as

V2 = (V rot + V ran)2 = V2
rot + 2V rot · V ran + V2

ran, (A1)

where V ran is the velocity corresponding to the pressure-
support term. When V2 is averaged around the galaxy, the
crossing term disappears because of the randomness of V ran

and axisymmetry of V rot, yielding

〈V2〉 = 〈
V2

rot

〉 + 〈
V2

ran

〉
. (A2)

The first term is related to the apparent rotation velocity
projected on the sky, vz:rot, as

vz:rot = Vrotsinicosθ. (A3)

Here, i is the inclination angle of the rotation axis, and θ

is the azimuthal angle of the particle from the major axis.
Knowing that i and θ are independent and 〈cos2θ〉 = 1/3
by averaging over θ from 0 to π/2, we have

〈
V2

rot

〉 = 3
sin2i

〈
v2

z:rot

〉
. (A4)

Replacing 〈V2
ran〉 by 3〈v2

z:ran〉, where vz:ran is the z-directional
component of V ran, we obtain

〈V2〉 = 3
〈
v2

z:ra

〉 + 3
sin2i

〈
v2

z:rot

〉
. (A5)

Writing the observable z-directional velocity as vz =
vz:ran ± vz:rot, and remembering that the crossing term
〈±2vz:ranvz:rot〉 reduces to zero for randomness of the sign
of vz:ran, we obtain

〈
v2

z

〉 = 〈
v2

z:ra

〉 + 〈
v2

z:rot

〉
. (A6)

Hence, we have

〈V2〉 = 3
〈
v2

z

〉 + 3cot2i
〈
v2

z:rot

〉
. (A7)

For an edge-on case, i = 90◦, we have

〈V2〉 = 3
〈
v2

z

〉
, (A8)

the same as for random motion (Limber & Mathews 1960).
If we assume the same inclination as the main disk of M 31,
i = 77◦ to 78◦, we have

〈V2〉 = 3
〈
v2

z

〉 + α
〈
v2

z:rot

〉
(A9)
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with α � 0.15. Since 〈v2
z:rot〉 is smaller than 〈v2

z 〉, we may
neglect the second term, obtaining

〈V2〉 � 3
〈
v2

z

〉
. (A10)

Finally, we define the pseudo rotation velocity as

V =
√

〈V2〉 =
√

3
〈
v2

z

〉
. (A11)
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