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Abstract

Particle dark matter in the Galactic halo may be bound to the solar system either by

elastic scattering through weak interactions with nucleons in the Sun (weak scattering) or

by gravitational interactions with the planets, mainly Jupiter (gravitational capture). In

this thesis, I simulate weak scattering, gravitational capture, and the subsequent evolution

of the bound orbits to determine the distribution of bound dark matter at the position of the

Earth. Previous work on this subject suggested that the event rate in dark matter detection

experiments due to bound particles could be of order the event rate of halo particles in direct

detection experiments, and several orders of magnitude higher for neutrinos arising from

dark matter annihilation in the Earth. I use direct integration of orbits in a simplified solar

system consisting of the Sun and Jupiter. I follow bound orbits until the particles are either

rescattered in the Sun onto orbits that no longer intersect the Earth, ejected from the solar

system, or reach the lifetime of the solar system tSS = 4.5 Gyr. Since many aspects of

the particle orbits pose severe problems for traditional orbit integration methods, I develop

a novel integration scheme for this problem, which has only small and oscillatory energy

errors even for highly eccentric orbits over very long times. Using the bound dark matter

distribution functions I generate from the simulations, I show that bound dark matter has

a small effect on direct detection event rates, and that it will be almost impossible to detect

neutrinos from dark matter annihilation in the Earth with the new generation of km3-

scale neutrino telescopes. I also show how the distribution functions and resulting direct

detection and neutrino telescope event rates can be scaled to other particle masses and

elastic scattering cross sections.
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Chapter 1

Introduction

1.1 Evidence for Dark Matter

One of the most fundamental questions pertaining to the cosmos is: What is the universe

made of? In the twentieth century, there have been several paradigm shifts (quantum

mechanics, quantum electrodynamics, quantum chromodynamics, electroweak unification)

in our understanding of ordinary matter (nucleons, electrons, etc.; generally referred to

by astronomers as “baryons”). When this knowledge is combined with the twentieth cen-

tury concept of general relativistic cosmology, with observations of the abundances of light

elements such as deuterium and helium, and observations that show that the universe is

homogeneous and isotropic and emerged from an initial singularity, it is even possible to

calculate just how much ordinary matter exists in the universe.

However, in the latter half of the last century, it became clear that although ordinary

matter was a “known known”,1 it is only a small component of the total energy density ρtot

of the universe. A suite of observations (described below) indicate that the concordance

model, as proposed by Ostriker & Steinhardt (1995), provides a good description of the

universe. In this model, which I now describe, the universe is flat (Ω ≡ ρtot/ρcrit = 1, which

defines the critical density ρcrit). A mechanism such as inflation (Guth, 1981; Albrecht

1former Secretary of Defense Donald Rumsfeld ‘54, Feb. 12, 2002.

1
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et al., 1982; Linde, 1982, 2007) or cyclic models (Khoury et al., 2001, 2002a,b) smooths

and isotropizes the universe on scales of at least the current horizon size, and provides the

initial tiny quantum density fluctuations that lead to structure formation once matter and

not radiation governs the expansion of the universe. In this model, baryons make up only

∼ 4% of the total mass-energy density of the universe. Recent observations (e.g., Spergel

et al., 2007) show that non-baryonic gravitationally attractive material (“dark matter”)

contributes 23% to the energy density, and a substantial 72% of the total energy density

is made of gravitationally repulsive material (“dark energy”). Therefore, an overwhelming

∼ 95% of the universe is made up of “known unknowns,”2 assuming that general relativity

is an accurate description of gravity on large scales.

Dark energy has only recently been established to exist, and its nature will be difficult

to ascertain (see Kamionkowski, 2007, and references therein). However, it is thought that

the nature of dark matter may be possible to determine in the next decade. There is al-

ready a large body of astrophysical evidence, from a wide range of physical scales, on the

existence and distribution of dark matter, and hints from both astrophysics and particle

physics as to its properties. This evidence is guiding future experimental and observational

efforts to determine the nature of dark matter. The following is a description of some of

the observations, simulations, and theoretical arguments that lead to the current consensus

on dark matter.

1.1.1 Astrophysical Evidence

Galactic Rotation Curves

The classic evidence for the existence for dark matter comes from the rotation curves of

spiral galaxies. Spiral galaxies are dynamically cold systems, so stars and gas move on

almost circular orbits. The circular velocity vc(R) for stars in the plane of an axisymmetric

disk (z = 0 in cylindrical coordinates) at a distance R from the galactic center is

v2
c (R) = −R∂Φd

∂R

∣∣∣
z=0

, (1.1)

2Ibid.
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where Φd(r) is the gravitational potential of the disk. For a thin, axisymmetric disk with a

surface mass density Σ(R) (Eq. 2-139 in Binney & Tremaine, 1987),

Φd(r) = −GN

∫
∞

0
Σ(R′)R′dR′

∫ 2π

0

dφ′

|r− r′| , (1.2)

where GN is Newton’s constant and φ is the azimuth in cylindrical coordinates. Disk

galaxies typically have light curves for stars and gas that fall rapidly at large radii. If the

mass-to-light ratio Υ = (M/M�)/(L/L�) is constant throughout the disk, where M is the

mass of an element of the disk and L is its luminosity, then the surface mass density has

the same shape as the surface brightness. Therefore, Σ(R) should fall rapidly with R at

large radii, and Φd and vc should asymptotically behave as Φd ∝ R−1 and vc ∝ R−1/2. This

is illustrated for the SA(s)cd galaxy NGC 6503 in Figure 1.1. The left side of this Figure

shows a gri composite image from Frei et al. (1996), and the curve marked “disk” in the

right half of the Figure shows the circular velocity due to stars in the disk if the surface

brightness is scaled by a fitted Υ and inserted into Eqs. (1.1) and (1.2) (Begeman et al.,

1991). The circular velocity due to the stellar component is falling rapidly as a function of

galactocentric distance for R > 2 kpc. If stars were the main source of matter in NGC 6503,

then the velocity profile of any cold tracer should mimic this circular velocity curve. The

contribution to the circular velocity curve from the mass in gas is even smaller, as shown

by the lowest curve in Figure 1.1. This is generically true of other spiral galaxies, too.

Observations have been made of atomic gas clouds (using the 21 cm hyperfine transition

of hydrogen) in circular orbits both inside and beyond the stellar disk of many galaxies (i.e.,

out to radii of 25− 100 kpc; Rubin et al., 1978, 1980; Bosma, 1981). If galaxies were made

mostly of stars, than the rotation curve of the atomic gas should follow a curve akin to

the “disk” curve in Figure 1.1. However, these observations show that instead, the circular

speed is constant or rising as far out as measurements are made. This is true, for example,

for NGC 6503, for which the points with error bars mark the observed circular velocity.

The observed circular velocity curve can be fit by adding to the baryonic components (stars

and gas) a spherical distribution of dark matter, which contributes vdm
c (r) =

√
GM(r)/r,

where M(r) is the total dark mass within r. The flatness or rise in the circular velocity
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Figure 1.1: Left: The spiral galaxy NGC 6503. Image from Frei et al. (1996). Right: The
rotation curve of NGC 6503. The curves labeled “gas,” “disk,” and “halo” represent the
contributions from the mass in gas, stars, and a dark halo. This plot of the rotation curve
is from Bertone et al. (2005b) using data from Begeman et al. (1991).

imply that the interior dark mass rises like M(r) ∝ rα with α & 1 at large radii. This

contribution is labeled “halo” in Figure 1.1.

There have been several attempts to model these data without resorting to non-baryonic

dark matter. Persic & Salucci (1992) and others argued that the luminous matter density

in spiral galaxies implied Ωb = ρb/ρcrit = 0.0007, while the total stellar density (derived

from both elliptical and spiral galaxies) implied Ω∗ = ρ∗/ρcrit = 0.002, both of which

are far below the Big Bang nucleosynthesis value of Ωbh
2 = 0.023, where h is the Hubble

parameter such that the Hubble constant H0 = 100hkm s−1Mpc−1 (the best current es-

timate is h = 0.7; see Komatsu et al., 2008). More recent estimates of the total mass of

stars and stellar remnants are somewhat higher, with Fukugita & Peebles (2004) suggesting

Ω∗ = 0.0024 and Cole et al. (2001) estimating Ω∗ = 0.0029, but still far below the baryonic

density implied by nucleosynthesis. Therefore, some have suggested that perhaps so-called

“dark baryons” could flatten the rotation curves. However, Zaritsky et al. (1993) used the

orbits of satellite galaxies about spiral galaxies similar to the Milky Way to demonstrate

that the circular velocity remains high and constant out to r & 200 kpc, and this result
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is consistent with weak lensing estimates of the mass distribution. The dark halos likely

extend even beyond this radius. Given that the mass within a radius r of the galactic

center rises like rα for a significant part of the halo, there could simply not be enough dark

baryons to completely fill the dark matter halo without violating the nucleosynthesis limit.

In addition, in the Milky Way, it appears that about 40% of the baryons predicted to be in

a Milky Way-sized halo if Ωm/Ωb ' 6 are in stars (Xue et al., 2008). Given the estimated

mass of the Milky Way halo, there are not nearly enough baryons, both dark and luminous,

to build up the entire mass of our halo.

Another attempt to explain the rotation curves involves altering gravity. Milgrom

(1983a,b) postulated that the acceleration of gravity deviates from its Newtonian behavior

for small accelerations. While this simple model can successfully reproduce the flat rotation

curves of many galaxies, relativistic formulations of this idea (TeVeS, or tensor-vector-scalar

theory; Bekenstein, 2004; Bekenstein & Sanders, 2006) face increasing pressure from recent

gravitational lensing observations of clusters (Clowe et al., 2006b), which seem to require

at least some dark matter (see below for more detail).

While the rotation curves of spiral galaxies imply that a significant amount of dark

matter exists in the universe, the rotation curves of low surface brightness (LSB) galaxies

may provide important clues to the nature of dark matter. LSB galaxies provide a unique

insight into dark matter halos because of their very low baryon content. The baryonic con-

tribution to galactic rotation curves must be modeled in order to extract information about

the non-baryonic content, but disentangling the baryonic and non-baryonic contributions to

the mass is difficult. Galaxies with a small total baryon contribution therefore provide the

most direct probes of the dark matter distribution. Observations of LSB galaxies have been

made using long slit and integral field spectroscopy of the Hα line (McGaugh & de Blok,

1998; de Blok et al., 2001; de Blok & Bosma, 2002; Kuzio de Naray et al., 2006). The ve-

locity fields are fit with baryonic disks and spherically symmetric dark matter halos. These

fits indicate that the dark matter density near the center of the galaxy is flat, ρ(r) ≈ const

for small r, a “core” rather than “cusp” structure.
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This finding may indicate that there is a problem with standard assumptions about

dark matter. Typically, non-baryonic dark matter is modeled as “cold” (non-relativistic)

and collisionless (for large scale structure reasons, as discussed below). Cosmological simu-

lations using cold, collisionless dark matter (CDM) indicate that the density of dark matter

halos is cuspy at the center (Navarro et al., 1997, 2004; Hayashi et al., 2004). The presence

of baryons at the center of dark matter halos is thought to steepen the cusp. This is very

much in contrast to the observed flatness of the inner dark matter halos. Other than in-

voking modified gravity, several lines of thought exist to explain the discrepancy between

LSB galaxy observations and simulations. Spergel & Steinhardt (2000) suggest that parti-

cle dark matter may have a strong, short-range (∼ nuclear scale) self-interaction. This is

only valid if dark matter consists of non-Standard Model particles and not, for example,

primordial black holes (PBH, though there are limits on ΩPBH ; see Mack et al., 2006, and

references therein). If dark matter were self-interacting, the inner part of dark matter halos

would heat, leading to a flatter density profile at the center of the halo. Another line of

argument seeks to resolve the discrepancy within the framework of CDM. In CDM-only

simulations, halos have significant triaxiality. It has been suggested that the LSB data can

be fit well using realistically triaxial halos with cuspy profiles (Hayashi et al., 2004; Hayashi

& Navarro, 2006; Hayashi et al., 2007).

Therefore, from galactic rotation curves, we find that non-baryonic dark matter must

exist unless Newtonian gravity is not valid at large distances.

Galaxy Cluster Dynamics

There are several different types of observation of galaxy clusters that argue for the existence

of dark matter and hint at its properties. Cluster- and larger-scale observations are preferred

over galaxy-scale ones for estimating the total matter density in the universe ρm because

they sample a larger percentage of the observed universe, and should be less susceptible to

local fluctuations in the baryon-to-matter ratio.

The first indication that any type of dark matter might exist came from measurements of
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the velocity dispersion of galaxies in the Coma cluster (Zwicky, 1933). To see how velocity

dispersion measurements can translate into a statement about cluster mass, I make the

following simplified argument. For virialized, spherical equilibrium systems with isotropic

velocity dispersion, the Jeans equation relates the rms radial velocity σ of galaxies at a

particular radius r to the mass interior to that radius in the form

M(r) =
rσ2

G

(
d lnρ

d lnr
+

d lnσ2

d lnr

)
, (1.3)

where ρ(r) is the mass density of galaxies. If the mass density traces the luminosity density,

then

ρ(r) = Υj(r), (1.4)

where Υ is the ratio of all mass (luminous and dark) to the luminosity, and j(r) is the

luminosity density of galaxies. Therefore,

M(r) =

∫ r

0
ρ(r′)r′2dr′ (1.5)

= Υ

∫ r

0
j(r′)r′2dr′, (1.6)

and so one can rearrange Eq. (1.3) in the form

σ2 = Υ
G

∫ r
0 j(r

′)r′2dr′

r

(
d lnj
dr

+ d lnσ2

dr

) . (1.7)

Both the luminosity density j(r) and the RMS velocity profile σ(r) can be estimated by

deconvolving the observed line-of-sight integrals of these functions. Therefore, one must fit

Υ in order to satisfy Eq. (1.7). Since Zwicky’s time, many more clusters have been observed

with much greater precision to demonstrate that Υ ≈ 360 − 600, which is several orders of

magnitude higher than Υ inferred from galactic scale measurements (Kent & Gunn, 1982;

Merritt, 1987; Ostriker et al., 1988; van der Marel et al., 2000). This translates to a total

matter component Ωm = ρm/ρcrit ∼ 0.3, where ρm is the density of both baryons and

non-baryonic dark matter, as measured using clusters, since

Ωm =
ρm

ρcrit
=

Υjtot

ρcrit
. (1.8)



8

The total luminosity density jtot can be estimated from galaxy counts and the galaxy

luminosity function.

Clusters can also constrain any possible self-interaction between dark matter particles in

several ways. For example, (i) cluster halos are observed to be triaxial inN -body simulations

(Thomas et al., 1998; Jing & Suto, 2002), and there are hints of triaxiality in gravitational

lensing observations of clusters (Corless & King, 2007). However, numerical simulations

of cluster-sized dark matter halos indicate that self-interaction tends to makes halos more

spherical unless the cross section for interaction is smaller than what is necessary to flatten

LSB halo cores (Yoshida et al., 2000a; Miralda-Escudé, 2002). (ii) Gnedin & Ostriker (2001)

argue that a large self-interaction cross section would cause the evaporation of galaxy halos,

thus strongly affecting galaxy evolution in clusters. (iii) Further constraints on the self-

interaction cross section come from interpretations of cluster lensing data, which will be

discussed next.

Therefore, from probes of clusters that do not involve gravitational lensing, one can

estimate the total mass density of the universe Ωm ∼ 0.3 and place more stringent limits

on the self-interaction cross section than one could with only galactic-scale data.

Gravitational Lensing

Gravitational lensing is a consequence of general relativity. The trajectory of light must

bend as it encounters massive objects, since light travels on geodesics. There are three gen-

eral regimes of gravitational lensing: microlensing, in which a small object transits the line of

sight to a background object, causing the background object to temporarily brighten; weak

lensing, in which the images of background objects (usually galaxies) are slightly distorted

by foreground galaxies or clusters; and strong lensing, in which case multiple images of the

background object are created, each of which can be strongly distorted and (de)magnified

(see Narayan & Bartelmann, 1996, for a review). Both strong and weak lensing can be used

to constrain the shapes and density profiles of galactic and cluster halos (Keeton, 2001;

Mandelbaum et al., 2006a) since the path of light from background galaxies is altered by



9

all the matter within the foreground galaxy or cluster, not just the luminous component.

Strong lensing probes the inner regions of galaxies (r . 1 kpc) and clusters (r . 100

kpc). It is important to emphasize several key points about strong lensing. First, strong

lensing probes the innermost part of the galaxy or cluster. In galaxy-galaxy strong lensing,

baryons dominate the gravitational potential (Treu & Koopmans, 2004). In clusters, dark

matter usually dominates the potential. However, most clusters have a large galaxy sitting

at the bottom of the potential well, and there are usually many galaxies interior to the

lensing arcs. In addition, strong lensing is sensitive to halo triaxiality and substructure

(Meneghetti et al., 2007). Therefore, careful modeling of both the baryons and dark matter

halo is necessary to extract useful information about the dark component.

Initial examination of strong lensing data from the 1990’s implied that halo profiles

predicted by numerical simulations were too steep to be consistent with strong lensing, al-

though these data were modeled with only a halo and without a baryonic component. Even

when stellar components were added to models, there was still a significant discrepancy

with simulations (Keeton, 2001). It was suggested that self-interacting dark matter might

alleviate this discrepancy by smoothing the centers of galaxy and cluster halos (Keeton,

2001; Wyithe et al., 2001). However, galaxy and cluster modeling has become significantly

more sophisticated in the past decade; most analyses of strong lensing now include detailed

modeling of galaxies (including kinematics), and include ellipticity and substructure in the

host dark matter halo. Recent analyses of strongly lensed galaxies and clusters suggest

that the dark matter halos inferred from observation are consistent with those found in

cosmological simulations (Treu & Koopmans, 2004; Comerford et al., 2006; Limousin et al.,

2008).

Weak lensing probes the outer parts of galaxies and clusters, and is thus less sensitive

to the distribution of baryons than strong lensing. It is possible to reconstruct the mass

distribution of a galaxy cluster using weak lensing alone, or using a combination of weak

and strong lensing (Bradač et al., 2007; Kubo et al., 2007). However, for galaxy-galaxy

weak lensing, it is necessary to stack data from many (> 104) lenses to constrain the matter
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distribution. This is due to the fact that galaxies that are weakly lensed only experience a

tiny amount of shearing, and so the lensing signal has to be extracted statistically. Careful

analysis of weak lensing data from the Sloan Digital Sky Survey (SDSS; York et al., 2000)

demonstrates that the halos of groups and clusters are consistent with those predicted by

cosmological simulations using the CDM concordance model (Kubo et al., 2007; Mandel-

baum et al., 2006a; Navarro et al., 1997, 2004). Mandelbaum et al. (2006a) use weak lensing

data from ∼ 43, 000 luminous red galaxies on scales r > 40 kpc from the cluster or group

center to perform their fits, while Kubo et al. (2007) use ∼ 270, 000 galaxies from the SDSS

Data Release 5 to model the mass distribution of the Coma cluster.

The observation of a rare merging cluster (commonly called the “bullet cluster”) pro-

vides yet another way to constrain modified gravity theories and the self-interaction cross

section (Clowe et al., 2006b; Randall et al., 2007). Observations of gravitational lensing

have historically been a strong challenge to theories of modified gravity. The vector field

in TeVeS exists solely to mimic gravitational lensing. However, observations of the bullet

cluster strain modified gravity even more. As in most clusters, most of the baryonic mass

is in the form of hot (∼ 10 keV, depending on the mass of the cluster) gas. This constitutes

5 − 15% of the total mass in the cluster, while stars make up only about 1% of the total

mass, assuming Einstein gravity (Kochanek et al., 2003; Mahdavi et al., 2007).

Unlike most clusters, though, the bullet cluster consists of a smaller cluster that has just

undergone a head-on collision with a larger cluster. This is not readily apparent from the

optical image of the cluster, Figure 1.2a, which does not show the gas component. How-

ever, as one can see in Figure 1.2b, the smaller concentration of hot gas (on the right) has

experienced significant ram pressure as it passed through the gas of the larger initial cluster

(Markevitch et al., 2002). The ram pressure slows the bulk motion of the gas relative to

the galaxies, which are collisionless. If the two original clusters consisted only of baryons,

then the mass should be concentrated in the hot gas.

Using optical data from the Hubble Space Telescope Advanced Camera for Surveys

(HST/ACS) and the Magellan Telescope, the gravitational potential of the cluster was re-
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(a) (b)

Figure 1.2: Observations of the bullet cluster at a variety of wavelengths. Green lines
indicated the lensing reconstruction of the mass distribution in the cluster. (a): Contours
lie on top of an BVR composite optical image to indicate the distribution of galaxies relative
to the mass of the cluster. (b): An X-ray image of the hot gas in the cluster. Both figures
come from Clowe et al. (2006a).

constructed with weak lensing (Clowe et al., 2006a). The mass contours are denoted by

green lines in Figure 1.2. It is claimed that the centroids of the masses of the two original

clusters are offset from the gas mass by 8σ (Figure 1.2; the centers of the gas masses are

marked with + marks in the optical image), while the mass distribution is coincident with

the distribution of galaxies in the cluster. The offset between the bulk of the baryons and

the mass distribution appears to be extremely difficult to resolve with modified gravity

theories without invoking at least some dark matter (Angus et al. 2007; Feix et al. 2007;

although see Brownstein & Moffat 2007).

The bullet cluster can also be used to constrain the dark matter self-interaction cross

section. There are two main ways to constrain the cross section. First, self-interactions tend

to slow down the bulk flow of dark matter, just as ram pressure slows the gas. Therefore,

there ought to be a cross section-dependent offset between the center of the mass distribu-

tion from the lensing maps and the center of the galaxy distribution. The data demonstrate

that the centroids of the galaxy and mass distributions are within 1σ error bars of each

other. Secondly, self-interactions can scatter dark matter particles out of the centers of the

original clusters, thereby reducing the mass-to-light ratio. Randall et al. (2007) perform
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a suite of N -body simulations with various velocity-independent self-interaction cross sec-

tions, impact parameters, and initial halo mass profiles. They find that the lack of centroid

offset constrains the cross section to σ/m < 1.25 cm2g−1, while the mass-to-light ratio

forces σ/m < 0.7 cm2g−1. These limits rule out most of the cross section range that would

flatten the inner profiles of LSB galaxies.

Therefore, from lensing of galaxies and clusters, we find that modified gravity is increas-

ingly untenable as an alternate explanation to dark matter of the types of observations

listed above, that dark matter profiles from weak lensing surveys are in agreement with

CDM simulations of galaxy and cluster halos, and that self-interacting dark matter does

not need to be invoked to resolve apparent discrepancies between CDM simulations and

data.

Large Scale Structure

Comparisons of dark matter N -body simulations with observations of large scale structure

provide strong evidence that dark matter is cold and collisionless at large scales, and provide

further evidence that the universe has both dark matter (Ωm ∼ 0.3) and dark energy

(ΩΛ ∼ 0.7). While a variety of statistical tests (e.g., the galaxy correlation function or

power spectrum) exist to relate observations to theoretical predictions for specific values of

Ωm and ΩΛ, conclusions about dark matter can be reached simply by looking at maps of

the positions of galaxies (dark matter halos) obtained from observations (simulations).

The last decade has seen an explosion in the types and sizes of surveys available to

map structures in the distribution of galaxies and their evolution from z ∼ 1. The SDSS

main galaxy sample contains ∼ 500, 000 galaxies brighter than r = 17.77 and extends

to z ∼ 0.2. Once the SDSS main survey is complete, it will cover ∼ 104 deg2 of sky.

In addition, a sample of large red galaxies (LRGs) extends the galaxy redshift survey to

z ∼ 0.5 (Percival et al., 2007). A slice of this survey is shown in Figure 1.3. One can see

in this slice both the homogeneity on very large scales, which is consistent with predictions

from inflation and observations of the cosmic microwave background (CMB; Hinshaw et al.,
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Figure 1.3: An equatorial slice from the Sloan Digital Sky Survey. Figure from Gott et al.
(2005).

2007; Spergel et al., 2007), but also the exquisite filaments and voids on scales < 100

Mpc. Additionally, there are many surveys existing or planned to count galaxy clusters

as a function of redshift. These data are important because the formation of clusters,

which are the largest equilibrium structures in the universe, is highly sensitive to the recent

expansion history of the universe (see Dodelson, 2003, and references therein). Signatures of

clusters include X-ray emission from hot gas (XCS, Miller et al., 2006), Sunyaev-Zel’dovich

foregrounds in small-scale CMB experiments (ACT, SPT, APEX; see Sehgal et al., 2005,

for a review), and statistical overdensities of photometric redshifts from infrared galaxy

surveys (Brodwin et al., 2006).

The structure on small scales (. 100 Mpc) alone indicates that most of the dark matter

in the universe must have been non-relativistic well before the matter-radiation equality

epoch zeq ≈ 3500. The simple explanation for this fact comes from the Jeans instability.

During the era of radiation domination, the Jeans length is approximately the size of the

horizon, which means that density perturbations cannot grow in size. If collisionless dark
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matter is relativistic in this era, then it can stream out of the density perturbations, hence

completely washing out density perturbations on scales smaller than the free-streaming

scale, which is set by the coordinate distance a particle travels before matter-radiation

equality (Kolb & Turner, 1990). Matter which is relativistic near the time of matter-

radiation equality is called “hot,” while matter which becomes non-relativistic well before

this epoch is called “cold.”

One of the original candidates for dark matter was the neutrino. The advantage of

this candidate is that neutrinos are known to exist, unlike almost all other candidates.

However, the severe disadvantage of neutrinos as dark matter, other than the fact that

current experimental limits on the mass are too low for them to contribute significantly to

Ωm, is that neutrinos remain relativistic up to nearly matter-radiation equality. The free-

streaming length scales as λFS = 20 (mν/30 eV)−1 Mpc, which is much larger than even

superclusters for realistic (. 1 eV) neutrino masses (Kolb & Turner, 1990; Kraus et al.,

2005). When hot dark matter was considered in the 1980’s, the much looser constraints

on the neutrino mass (compared to today) suggested that the smallest structures that

could form if dark matter were hot were superclusters, although these could potentially

fragment to form galaxies. However, it was evident even then that simulations of hot

dark matter structure formation (see Figure 1.4) indicated that the clustering of galaxies

differed significantly from that of the contemporary observations of samples of ∼ 104 galaxies

(Huchra et al., 1983). Furthermore, in the hot dark matter paradigm, superclusters (and

hence, galaxies) could only have virialized relatively recently. This is in sharp contrast

to observations, which indicate that stars and galaxies must have started forming within

∼ 10 − 100 Myr after recombination (Bouwens et al., 2006). Currently, constraints on

neutrino masses are tight enough that the minimum free-streaming length, λFS ∼ 600 Mpc,

is far larger than a supercluster, so the present limits on the neutrino mass rule it out as

the dominant dark matter component in the universe. In general, observations of structure

formation and evolution place extremely stringent constraints on hot dark matter. The

data resemble what one would expect if dark matter were cold.
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(a) (b)

Figure 1.4: Simulations of structure formation for (a) cold dark matter and (b) hot dark
matter universes. Each image is 300h−1 Mpc on a side. Images are from Martin White’s
primer on cosmological models:
http://astro.berkeley.edu/∼mwhite/modelcmp.html

Observations and simulations of structure formation in a ΛCDM universe also agree

with the value of Ωm ∼ 0.3 derived from cluster mass estimates, and indicate that the

universe must have a significant dark energy contribution. There are two major indicators

from large scale structure that the value of Ωm is small (Ωm < 1). The first indicator comes

from small scale structure. Recall that density perturbations can only grow if the scale of

the perturbation exceeds the Jeans length and lies within the horizon. During radiation-

domination, the Jeans length is approximately the same size as the horizon, but during

matter-domination, the Jeans length becomes vanishingly small. Perturbations that enter

the horizon before matter-radiation equality have their growth retarded relative to scales

that enter during matter-domination. Matter-radiation equality happens earlier for larger

Ωm, so that small scale power increases as a function of Ωm.

Secondly, structure growth depends on the expansion history of the universe. Growth

is much slower at late times for a dark energy dominated universe relative to a universe

with Ωm = 1, since the expansion rate is accelerating in the universe with significant dark

energy but not in the case where Ωm = 1. The matter correlation functions and cluster

counts ought to be more or less in place by z ∼ 1 for a dark energy-dominated universe,
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Figure 1.5: Structure formation as a function of time for Ω = Ωm = 1 (labeled τ in the
figure) and ΛCDM (ΩΛ = 0.7,Ωm = 0.3) universes using the Virgo Consortium Hubble
Volume simulations. The points mark the location of clusters in redshift space. This figure
is from Evrard et al. (2002).
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but be rapidly evolving from z = 1 to z = 0 in a universe that is matter-dominated to the

present. This is readily apparent in simulations, as indicated in Figure 1.5. In this Figure,

the redshift slice marked τ is the result of a simulation with Ωm = 1, while the slice marked

Λ results from a canonical ΛCDM simulation. The number of clusters and distribution of

galaxies as a function of redshift in the ΛCDM simulation is consistent with observations,

while the τ -simulation is not.

Therefore, from observations and simulations of large scale structure, we find that dark

matter must be cold, and have an abundance Ωdm = Ωm − Ωb ∼ 0.25.

Relic Abundance

From the dark matter fraction Ωdm ≈ 0.25, it is possible to infer the dark matter annihilation

cross section directly if the dark matter is a thermal relic particle. In the early universe,

if the dark matter annihilation rate Γ is much greater than the Hubble expansion H, then

dark matter particles remain in thermal equilibrium. The equilibrium number density

is determined by the temperature of the universe, which is also related to the Hubble

expansion. Since the universe cools as it expands, the equilibrium number density of dark

matter particles drops with time. However, once the annihilation rate drops below the rate

of expansion of the universe, the dark matter particles drop out of equilibrium, and the

number density of particles “freezes out.”

A simplified version of the relationship between the annihilation cross section and the

current dark matter density goes as follows. The time (equivalently, temperature or scale

factor of the universe) at which dark matter decouples from the other thermal particle

species can be determined by Γ ∼ H, where Γ ≈ 〈σAv〉neq, 〈σAv〉 is the thermally averaged

annihilation cross section, and neq is the equilibrium dark matter density. Since both H

and neq are temperature-dependent, the temperature of freeze-out Tf can be determined

approximately by

H(Tf )

neq(Tf )
= 〈σAv〉. (1.9)

Therefore, the temperature of freeze-out is uniquely related to the thermally averaged an-
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Figure 1.6: Relationship between the number density of relic dark matter particles and the
annihilation cross section. The solid line represents the equilibrium number density of cold
dark matter particles. The dashed lines represent the number density at freeze out for a
variety of annihilation cross sections. Figure originally from Dodelson (2003).
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nihilation cross section, and the thermally averaged cross section is inversely proportional

to equilibrium number density at freeze out.

Since the universe is radiation-dominated at the time of freeze out, the Hubble expansion

is related to the scale factor a by (cf. Kolb & Turner, 1990)

H ∝ a−2. (1.10)

By convention, the current value of the scale factor is set to a0 = 1. During radiation

domination, the scale factor depends on the temperature as

a ∝ T−1, (1.11)

such that the Hubble expansion is

H ∝ T−2. (1.12)

To relate Eq. (1.9) to the dark matter fraction today, I use the fact that

ρdm,f = ρdm,0a
−3
f , (1.13)

where af is the scale factor of the universe at the time of freeze-out, and ρdm,f is the dark

matter density at freeze-out. The current dark matter density ρdm,0 can be related to Ωdm

using the relation

ρdm,0 = Ωdmρcrit. (1.14)

For simplicity, I set neq(Tf ) = ρdm,f/m, where m is the dark matter particle mass, although

in the full relic calculation, there is equality only within a factor of order unity between

the equilibrium number density neq(Tf ) and the freeze-out number density (Kolb & Turner,

1990; Jungman et al., 1996). The value of neq sets the freeze-out time through Eq. (1.9).

Therefore combining Eqs. (1.9), (1.13), and (1.14), one can estimate the velocity-averaged

annihilation cross section as a function of today’s dark matter fraction

〈σAv〉 ∝
mH(Tf )a3

f

ρcritΩdm
(1.15)

∝
(
m

Tf

)
1

ρcritΩdm
. (1.16)
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Jungman et al. (1996) find that the quantity m/Tf is a fairly weak function of particle mass

and cross section (they say the dependence is logarithmic), so that 〈σAv〉 ∝ Ω−1
dm. This is

also demonstrated in Figure 1.6, which shows the equilibrium number density (solid line)

as a function of m/T . The spin-averaged cross section (or equilibrium number density) may

change by orders of magnitude even if m/T only changes by a few percent.

The relationship between Ωdm and the cross section can be simply understood using

Figure 1.6. For a fixed particle mass, if the annihilation cross section is low, then dark matter

falls out of equilibrium early and at a high temperature. Therefore, the equilibrium number

density is high, and so is the density of dark matter today. However, if the annihilation

cross section is high, the dark matter falls out of equilibrium much later, and so the relic

number density is low. For the measured value of Ωdm ≈ 0.25, the annihilation cross section

is 〈σAv〉 ≈ 3 × 10−26 cm3s−1.

There are several caveats to the simple scaling between Ωdm and the annihilation cross

section, which are described at length in Kolb & Turner (1990) and Jungman et al. (1996). I

will briefly discuss two examples. If the velocity-averaged cross section is energy-dependent,

then the calculation is much more complicated. Also, if there is a particle only slightly more

massive than the dark matter particle, and if it has a lifetime comparable to the age of the

universe at freeze-out or if the annihilation cross section is a bit higher than that of the

dark matter particle, abundances depend sensitively on the nature of the slightly higher

mass particle.

1.1.2 Tantalizing Hints from Particle Physics

There are several well-motivated cold dark matter candidates from extensions to the Stan-

dard Model. The Standard Model, which unifies the weak and electromagnetic forces in one

framework, is most likely an effective theory of a much higher energy theory. The reasons

for this are that the Higgs mechanism, which exists to impart mass to particles, is put into

the Standard Model by hand; and that it is desirable to unify all forces of nature at the

Planck scale. However, the Planck scale is some ∼ 17 orders of magnitude higher than the
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electroweak unification scale, so radiative corrections to the Higgs mass from any high en-

ergy unification theory drive the Higgs mass to that high energy scale unless there is severe

fine-tuning. This problem is often called the “hierarchy problem.” Two methods have been

generally employed to address this issue. First, there are methods to cancel the radiative

corrections to stabilize the Higgs mass. The other approach is to significantly lower the

scale of unification. Both approaches yield natural dark matter candidates.

The most prominent framework to eliminate radiative corrections for high energy theo-

ries is supersymmetry (SUSY). In the simplest form of this theory, the minimal supersym-

metric model (MSSM), each Standard Model particle has a supersymmetric counterpart

(“sparticle”) with spin differing by a half integer. The bosonic and fermionic loops for

corrections to the Higgs mass cancel. The supersymmetry must be broken so that particles

and sparticles have mass, but the mechanism for symmetry breaking is not understood. In

many formulations of supersymmetry, including the MSSM, there exists a symmetry called

R-parity which makes the least massive supersymmetric particle (LSP) stable against de-

cays to Standard Model particles. Therefore, the LSP is a natural dark matter candidate.

Another intriguing aspect of the LSP is that it can be produced thermally in the early

universe. For a broad swath of MSSM parameter space, the density of LSPs matches that

required by astrophysics. In most cases the LSP is the neutralino, a Majorana particle that

is the lowest-mass eigenstate of the supersymmetric partners of gauge and Higgs bosons.

For reviews of SUSY phenomenology, see Jungman et al. (1996) and Chung et al. (2005).

Alternatively, one can lower the unification scale to lower radiative corrections. In order

to accomplish this, extra dimensions are usually invoked (Arkani-Hamed et al., 1998, 1999;

Randall & Sundrum, 1999a; Appelquist et al., 2001). In these extra-dimension theories,

gravity propagates in 4 + n dimensions. The Planck mass in the bulk dimensions of theory

is of order TeV scale, but particles on the 3+1-dimensional branes perceive the Planck mass

as being ∼ 1019 GeV. The (4+n)−dimensional Planck scale is related to the 4-dimensional

Planck scale by factors of either the volume of the compact space (Arkani-Hamed et al.,

1998, 1999) or the curvature of warped extra dimensions (Randall & Sundrum, 1999a).
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Of particular interest are theories in which Standard Model particles can propagate in

compact extra dimensions. Such theories are called “universal extra-dimension theories”

(UED; Appelquist et al., 2001; Hooper & Profumo, 2007). In such theories, the particle

momenta must be quantized in the extra dimension. However, on our 3+1-dimensional slice

of the space-time, the momentum appears as mass. Therefore, for each Standard Model

particle, there is a tower of particles with identical quantum numbers but with higher mass

m2
i,q = m2

i,0 +
q2

R2
, (1.17)

where mi,q is the mass of the qth excitation of the ith particle species, mi,0 is the Standard

Model mass of particle i, and R is the compactification scale. There are some subtleties

due to radiative corrections (Hooper & Profumo, 2007) which impact the mass hierarchy

of the particles. The particles are called “Kaluza-Klein” particles, since the first formu-

lation of extra dimension theories came from Kaluza and Klein in the early part of the

20th century, albeit in a completely different context. These UED theories are of interest

because, as in supersymmetry with R-parity, there exists a lightest Kaluza-Klein particle

(LKP) which is stable against decay to ordinary Standard Model particles. This comes

about from “Kaluza-Klein parity,” which states that the qth excitation can only decay in

such a way that the total q for the interaction must remain even for even initial q or odd

for odd initial q. Therefore, even-q particles can decay to Standard Model particles, but

odd-q particles can only decay to the first-excitation modes. Therefore, the lightest particle

in the first excitation is stable. For much of KK parameter space, the LKP is the B(1), the

first excitation of the weak hypercharge gauge boson (sometimes called the “KK photon”).

Candidates for particle dark matter quite naturally arise from the most prominent

beyond-Standard Model theories. In these models, dark matter particles have weak interac-

tions with matter; they are therefore generically referred to as WIMPs, Weakly Interacting

Massive Particles. It should be cautioned that there could, in fact, be more than one species

of dark matter.
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1.2 Various Probes of Dark Matter Properties

While the observations described in Section 1.1.1 provide strong evidence for the existence

of dark matter, and give some insight into its abundance and properties, the fact remains

that dark matter has not been observed. In order to confirm the existence of dark matter, it

is necessary to observe dark matter directly (by its interactions with baryons) or indirectly

(by its annihilation spectrum). The properties of WIMPs that have been inferred by probes

described in the previous section do not seriously constrain particle theories of dark matter,

with the exception that structure formation requires that the bulk of dark matter must be

non-relativistic well before matter-radiation equality. Direct or indirect detection of dark

matter would also yield valuable information about its mass, interaction cross sections with

baryons, and branching ratios for annihilation. These data can be used to constrain and

distinguish between particle theories of dark matter.

In this section, I will describe astrophysical observations to probe WIMPs and their

properties. I will divide my discussion into Galactic-scale and solar system-scale tests of

dark matter. There is a large body of work on interpretations of collider signatures, as well

as constraints on theory space using a combination of astrophysical and collider experiments,

which I will not address (but see, e.g., Arkani-Hamed et al., 2006b,a; Canepa, 2006; Carena

et al., 2007; Hooper & Profumo, 2007; Hooper & Taylor, 2007).

1.2.1 (Extra)Galactic Methods

Galactic and extra-galactic methods for observing WIMPs focus on the annihilation prod-

ucts. The energy spectrum of annihilation products is a rich source of information on the

dark matter particle and its underlying theory. Of special interest are the spectra of γ-rays

and synchrotron emission from ultra high energy e+e− resulting from dark matter annihi-

lation. Annihilation to neutrinos will be important for solar system methods, and so will

be discussed in that section. There are also experiments underway to examine the local

positron, anti-proton, and anti-deuteron abundances, each of which could harbor a signal

of WIMP annihilation (for a review, see Bertone et al., 2005b). However, in this section,
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the focus is restricted to photon signatures of dark matter.

Dark matter annihilation can produce a continuum of γ-rays in showers from the ini-

tial annihilation products (e.g., W+W−, bb̄, τ+τ−), since WIMPs cannot decay directly to

photons. This continuum spectrum depends on the dark matter particle mass as well as

the annihilation branching fractions. In particular, annihilation to τ+τ− leads to a much

harder γ-ray spectrum since these particles can decay directly to neutral pions, which in

turn decay by π0 → γγ. It is perhaps possible to distinguish between supersymmetric and

UED dark matter on the basis of the γ-ray spectrum since UED dark matter generically has

a much higher branching fraction to τ+τ−, although the branching fractions span a large

range in the case of supersymmetric WIMPs (Hooper & Zaharijas, 2007).

It may also be possible to determine the WIMP mass exactly. Even though dark matter

cannot annihilate directly to photons at tree level (or else it would not truly be dark), it

can annihilate to two photons through loops (Bertone et al., 2005b). Dark matter can also

annihilate to a photon and a Z-boson through loops. Therefore, line emission, though sup-

pressed relative to continuum emission, would if detected precisely nail the WIMP mass.

There are two main methods for detecting astrophysical γ-rays. Hard (& 102 GeV)

γ-rays can be observed with terrestrial air Čerenkov telescopes (ACTs). These telescopes

generally have large fields of view and angular resolution of order arcminutes or tens of

arcminutes. Telescopes include CANGAROO (Kubo et al., 2004), VERITAS (Holder et al.,

2006), and H.E.S.S. (The H. E. S. S. Collaboration, 2006). Space telescopes can probe a

much broader spectrum than ACTs, generally Eγ ∼ MeV−TeV. These telescopes have a

much larger field of view than ACTs, but lower sensitivity at high energies. The EGRET

instrument aboard the Compton Gamma Ray Observatory provided the first glimpse into

the soft γ-ray universe (e.g., Esposito et al., 1999; Hartman et al., 1999), while the upcoming

GLAST telescope, scheduled to launch in 2008, is eagerly anticipated (Wai et al., 2007).

Since the annihilation rate scales as Γ ∝ n2, where n is the dark matter number density,

any regions with large dark matter concentrations are potentially observable. Therefore,

much effort has been expended into predicting and observing signals from the Galactic cen-
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ter, substructure within the Milky Way, and Milky Way satellite galaxies. I will highlight

the prospects for and complications associated with each astrophysical site.

The Galactic Center

There are many serious uncertainties associated with assessing the prospects of observing

dark matter annihilation products at the Galactic center. The issues can be categorized

into:

• Dark matter modeling uncertainty: There are several layers of uncertainties in mod-

eling the density of dark matter, all due to the fact that annihilation is most effective

at scales � 1 kpc. A major uncertainty in the density profile is that the inner density

profile of dark matter halos is poorly constrained from simulations. The first large-

scale dark matter-only simulations implied that the dark matter density profile could

be well modeled by

ρ(r) =
ρs

(r/rs)
α [1+( r/rs )γ ](β−α)/γ

, (1.18)

where ρs is 2−(β−α)/γ times the density at the turnover radius rs, and (α, β, γ) =

(1, 3, 1) for the Navarro-Frenk-While simulations (NFW; Navarro et al., 1997) and

(1.5, 3, 1.5) for the Moore simulations (Moore et al., 1999). For small r/rs, ρ ∝ r−1

for the NFW profile and ρ ∝ r−1.5 for the Moore profile. However, these fits were

made for radii & tens of kpc from the halo centers for Milky Way-sized halos, well

outside of our region of interest. More recent, higher resolution simulations indicate

that the density profile never converges to a power law at small radii (Navarro et al.,

2004). The uncertainty in the dark matter profile estimated from simulations leads to

a factor of ∼ 100 uncertainty in the γ-ray flux from annihilations, with steeper dark

matter profiles having a much stronger signal. The uncertainty is exacerbated by the

fact that gravitational potential at r < 1 kpc is heavily dominated by baryons, and is

dominated by the central supermassive black hole (SMBH) at scales r < 2 pc. It was

proposed that the adiabatic growth of the SMBH could yield a high density, highly
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cuspy “spike” of dark matter for r < 2 pc (Gondolo & Silk, 1999), in which case the

flux of photons from the Galactic center ought to be significantly boosted. However,

this scenario is quite dependent on the merger history of the black hole, and is only

effective if the black hole sits at the very center of the Galactic potential well (Ullio

et al., 2001a). Mergers of black holes can actually reduce the dark matter density

near the center (“core scouring”). More generally, the density profile of dark matter

depends on the accretion and merger history of the galaxy and the central black hole,

as well as on long-term interactions with stars and the SMBH (Merritt et al., 2002;

Bertone & Merritt, 2005). It is possible that two-body scattering off stars could yield

a density cusp ρ ∝ r−1.5 within the SMBH’s sphere of influence if the last major

merger happened long before the present (Merritt et al., 2007). Therefore, it is still

unclear how the dark matter density profile evolves for r < 1 kpc.

• Surprise backgrounds: Initial results from CANGAROO (Tsuchiya et al., 2004) and

H.E.S.S. (Aharonian et al., 2006) indicate a significant TeV-scale excess at the Galac-

tic center that is likely due to a previously unknown astrophysical source, given that

the power-law spectrum of these γ-rays is inconsistent with predictions of WIMP

annihilation (Aharonian et al., 2006). This source may be related to the SMBH (Aha-

ronian & Neronov, 2005). In any case, this signal will make it extremely difficult to

observe line emission from WIMP annihilations (Zaharijas & Hooper, 2006), although

it should still be possible to observe continuum emission for some subset of parameters

for dark matter models (Hooper & Zaharijas, 2007; Hooper et al., 2007a). An excess

of radiation was also observed at ∼ GeV energies with EGRET (Mayer-Hasselwander

et al., 1998). The interpretation of this source is unclear, as it may be offset from the

Galactic center (Hooper & Dingus, 2002) and may be variable (Nolan et al., 2003).

Nevertheless, it will also be a significant background for GLAST, although GLAST

has sufficient spatial resolution (∼ arcminutes) that it could distinguish the offset

source from the Galactic center.

• Propagation of e+e−: Upon careful examination and modeling of the Galactic mi-
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crowave emission observed by WMAP (Bennett et al., 2003), Finkbeiner (2004a) found

a spherically symmetric excess of emission located at the Galactic center, which he

has interpreted as synchrotron emission from e+e− resulting from dark matter anni-

hilation (Finkbeiner, 2004b). It is necessary to model the e+e− diffusion and energy

loss as these particles travel out from the Galactic center. While Hooper et al. (2007a)

demonstrate that synchrotron spectra do not vary significantly for several choices of

boundary conditions for solving the diffusion equation PDE, it is still possible that

astrophysical details for the diffusion constant and energy loss, such as the geometry

of the Galactic magnetic field, can have a large impact on the predicted synchrotron

spectrum for a given dark matter model (Finkbeiner, 2004b). Hooper et al. (2007a)

indicate that a dark matter profile with ρ ∝ r−1.2 can provide a good fit to the

observed synchrotron excess. If this is the case, it may be possible for GLAST to

observe continuum γ-rays from the Galactic center. The prospects dim for shallower

dark matter profiles.

Therefore, while the Galactic center appears at first glance to be a likely place to observe

photons resulting from WIMP annihilation, the prospects for observing γ-rays, and con-

firming the dark matter interpretation of excess synchrotron emission, are far from certain.

Substructure

Cosmological simulations of structure formation indicate that Milky Way-sized galaxy halos

ought to have a significant amount of substructure (e.g., Tasitsiomi & Olinto, 2002; Diemand

et al., 2007). It is expected that the substructures will contribute significantly to the total

annihilation signal of the halo. Some of these substructures are likely to be seen as point

sources, but unresolved substructures can contribute to the global diffuse emission of the

halo. The smallest substructures that can be resolved in simulations are of order ∼ 106M�

(Kuhlen et al., 2007). If dark matter is clumpy on even smaller scales, it will enhance the

dark matter annihilation signal since Γ ∝ n2. This will increase the global diffuse γ-ray

emission.
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The number and brightness of point sources due to substructures may be increased if

these substructures contain intermediate mass black holes (IMBH) of masses ∼ 102−106 M�

(Zhao & Silk, 2005; Bertone et al., 2005a). These IMBH can arise naturally in hierarchical

structure formation models if Population III stars leave massive (∼ 102 M�) remnants and

then merge as the host halos merge (Islam et al., 2004; Volonteri & Perna, 2005), or may

form directly if gas collapses to large black holes in the early universe (Bromm & Loeb,

2003). These IMBH could cause dark matter to settle into steady state density spikes about

them, as was suggested for the SMBH at the Galactic center (Gondolo & Silk, 1999; Bertone

& Merritt, 2005). It is thought that these spikes could survive to the present (Bertone et al.,

2005a). If this is the case, then it is quite likely that GLAST will be able to see annihilation

from these spikes, and likely that statistics will be high enough to distinguish between dark

matter models (Bertone et al., 2006). One caveat to this scenario is that there is little

evidence that IMBH actually exist (see van der Marel, 2004, and references therein).

Satellite Galaxies

The Milky Way is surrounded by a number of satellite galaxies. These galaxies could

potentially be observed as point sources by GLAST (Tasitsiomi et al., 2004; Hooper &

Zaharijas, 2007). As with the Milky Way halo, there is significant uncertainty in the galaxy

dark matter density profiles. The prospects for detection are therefore quite uncertain

(Wood et al., 2008).

1.2.2 Solar System Methods

Since the interpretation of Galactic probes of the annihilation spectrum is fraught with

serious uncertainties, it is worthwhile to search for dark matter in cleaner systems, or at

least systems for which there are fewer large uncertainties. In this section, I will describe

methods of detecting dark matter in the solar system; in the next sections, I will describe

the main uncertainties associated with these strategies, other than, of course, the WIMP

mass and WIMP-nucleon cross section, namely uncertainties in the dark matter distribution
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function.

Direct Detection

If WIMPs are produced thermally in the early universe, they must have a non-negligible

interaction with matter. Since the solar system sits in a bath of dark matter particles, it is

possible to design experiments to detect WIMP interactions with a baryonic target. WIMPs

can scatter either elastically or inelastically off target baryons. Since elastic scattering rates

are predicted to be substantially higher than inelastic rates (Ellis et al., 1988; Engel &

Vogel, 2000), the vast majority of direct detection experiments are focused on detecting

the small energy transfers from WIMPs to baryons during their rare elastic interactions

(exceptions being the DAMA LXe (Bernabei et al., 2000a) and PICO-LON (Fushimi et al.,

2006) experiments). From the event rates in these experiments, limits on the dark matter

particle mass and cross section can be inferred using astrophysical assumptions about the

dark matter distribution at the Earth’s surface.

To get a sense of how model assumptions affect how the event rate and energy spectrum

of interactions are translated to constraints on particle physics models, it is useful to examine

the formula for predicted event rates. In general, the WIMP-nucleus scattering rate per kg

of detector mass per unit energy transfer can be expressed as (cf. Jungman et al., 1996)

dR

dQ
=

(
mA

kg

)−1 ∫
∞

vcut

d3v
dσA

dQ
gAf(x, v), (1.19)

where dσA/dQ is the differential interaction cross section between a WIMP and a nucleus of

mass mA and atomic number A, v is the velocity of the dark matter particle with respect to

the experiment, vcut is the minimum WIMP speed that can yield an energy transfer Q, and

gA is the relative speed between the WIMP and the target nucleus. Since any target atoms

have small speeds relative to the speeds of dark matter particles, to a good approximation

gA = v. The dark matter distribution function at the Earth is f(x,v). Since favored

particle physics candidates for dark matter (LSP in the MSSM, LKP in UED models) may

have both spin-independent (SI) and spin-dependent (SD) interactions with matter, it is

customary to place separate limits on the SI and SD cross sections. Only nuclei with an
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odd number of protons or neutrons (or both) will have spin-dependent interactions with

WIMPs (Appendix B). Therefore, it is also customary to separate the limits on the spin-

dependent cross sections of protons and neutrons. In Figure 1.7, I show the current limits on

the WIMP mass and WIMP-nucleon spin-independent cross section σSI
p . Figure 1.8 shows

limits on the spin-dependent WIMP-proton cross section σSD
p as a function of WIMP mass,

and Figure 1.9 shows upper bounds on the WIMP-neutron spin dependent cross section

σSD
n . It should be obvious from Figures 1.7, 1.8, and 1.9 that the spin-independent cross

section is much more tightly constrained than the spin-dependent cross sections. This is

due to the fact (see Appendix B) that the total interaction cross section σSI
A ≈ A4σSI

p for

mWIMP � mA, while the spin-dependent cross section grows only as A2, and also has a

complicated relationship with the nuclear spin content. Currently, there exist only upper

bounds on the WIMP-nucleon event rates dR/dQ (with the exception of the DAMA annual

modulation result, the red patch in Figure 1.7, which will be discussed later). For a heavy

target, an upper bound on the event rate translates to a much lower upper limit for the

spin-independent WIMP-proton cross section than the spin-dependent cross section since

σSI,upper
p ∝ A−4dR/dQ while σSD,upper

p,n ∝ A−2dR/dQ.

For a given WIMP-proton (or WIMP-neutron) cross section, the integrated event rate

R =
∫
∞

0 dR/dQdQ is higher for a target of higher A. Many experiments use very heavy

atoms as targets in order to maximize the interaction probability. However, the event rate

dR/dQ falls off dramatically with Q, which is apparent in Figure 1.10. This fall-off results

from increasing incoherence in WIMP-nucleon scattering as a function of energy transfer Q,

with the slope of the fall-off in Figure 1.10 set by the coherence energy QA (see Appendix

B). In this Figure, I have shown differential event rates for three common target materials:

40Ar, 73Ge, and 131Xe. The steepness of the slope of the differential event rate is clearly

an increasing function of target mass. Therefore, in order to make use of the dramatically

higher interaction spin-independent cross section for heavy atoms, it is necessary to have a

low experimental energy threshold.

The event rate is proportional to the integral of the WIMP speed over the dark matter
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Figure 1.7: Limits on the spin-independent WIMP-nucleon cross section from recent exper-
iments. The CDMS and XENON experiments are discussed in the text. EDELWEISS is
a germanium experiment like CDMS, and ZEPLIN-II is another xenon-based experiment.
The plot is made using the interface available at
http://dendera.berkeley.edu/plotter/entryform.html.
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Figure 1.9: Limits on the spin-dependent WIMP-neutron cross section from recent experi-
ments. The plot is made using the interface available at
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Figure 1.10: Predicted spin-independent event rates per unit detector mass for a WIMP of
mass mWIMP = 470 GeV and interaction cross section σSI

P = 10−43 cm2. The dashed green
line indicates scatters with xenon (A = 131), the blue dotted line indicates a target mass
of germanium (A = 73), and the red solid line denotes interactions with argon (A = 40).
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distribution function. Therefore, good knowledge of the distribution function is required to

accurately translate event rates to constraints on particle physics models of dark matter.

Estimating the distribution function requires assumptions about the distribution function

of the dark matter halo, the motion of the Earth through the Galaxy, and effects within

the solar system. These various assumptions will be discussed in greater detail in Sections

1.3 and 1.4, but here I will describe the types of assumptions that are usually made in the

analysis of direct detection experiments. Exclusion plots in σ −mWIMP space are usually

made by modeling the Galactic distribution function as locally Maxwellian with a mass

density ρWIMP = 0.3 GeV cm−3 = 8× 10−3 M� pc−3. The dark matter density is assumed

to be smooth on scales much larger than the solar system. In translating the halo distri-

bution function to the dark matter distribution function at the Earth, one must take into

account the solar system’s nearly circular motion about the Galactic center, and the Earth’s

motion about the Sun. In particular, the Earth’s motion leads to an annual modulation

of the direct detection signal with a peak around June 2 every year, although this peak

is somewhat model dependent (Freese et al., 1988; Green, 2003). Some experiments (e.g.,

DAMA) are designed to investigate such modulations. Lastly, it is important to consider

the effects of the solar system on the dark matter distribution function. Most analyses are

performed using only the effect of the Sun’s gravitational potential on the distribution func-

tion. In practice, this means applying Liouville’s theorem to the distribution function (see

Eq. 2.9), so that phase space density is conserved. However, the dark matter distribution

function can be influenced both by the gravitational potentials of the planets and by elastic

scattering off baryons in the Sun and Earth. These effects are the focus of this thesis.

Using the fiducial set of assumptions, existing limits on event rates have been trans-

lated into constraints on the mWIMP − σSI
p (Figure 1.7), mWIMP − σSD

p (Figure 1.8), and

mWIMP − σSD
n (Figure 1.9) parameter spaces. The DAMA collaboration claims to have

discovered an annual modulation signature in their data (Belli et al., 2000; Bernabei et al.,

2000b). However, this finding is virtually impossible to reconcile with the results of all

other experiments (Ullio et al., 2001b; Savage et al., 2004; Gondolo & Gelmini, 2005). Until
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recently, the best experimental constraints on the spin-independent cross section came from

the CDMS experiment (Akerib et al., 2006b). This experiment, which is ongoing, consists

of towers of cryogenically cooled silicon and germanium, located in the Soudan Mine in

Minnesota. Events are identified by their thermal and ionization signatures. The exclusion

curve in Figure 1.7 is based on 34 kg · day of data from germanium and 12 kg · day of sili-

con. Recently, the XENON collaboration presented its first results on the spin-independent

cross section from the XENON10 experiment (Angle et al., 2007). The exclusion limit is

based on ≈ 60 days of data on their 10 kg xenon target located in the Gran Sasso National

Laboratory. The threshold for this experiment is 4.5 keV, but it may be possible to push

the threshold lower since event discrimination improves in xenon for smaller recoil energies

(Shutt et al., 2007). Event discrimination is crucial due to the high background of these

experiments and the fact that expected event rates from WIMPs are R � 1 event kg−1

day−1.

The best direct detection limit on the σSD
p cross section comes from the NAIAD ex-

periment, a NaI(Tl) crystal-based experiment that was located in the Boulby Underground

Laboratory (Alner et al., 2005), and the KIMS experiment, a CsI(Tl) experiment in the

Yangyang Underground Laboratory. The NAIAD experiment is primarily sensitive to the

proton cross section because both the sodium (23Na) and iodine (127I) in the target crystal

have an unpaired proton. NAIAD’s limit on the WIMP-proton cross section is based on

an analysis on 44.9 kg·day of data. The KIMS limit is based on 3409 kg·day of data, and

both the iodine and 133Cs in the crystals have unpaired protons. The CDMS experiment

currently boasts the tightest constraint on the WIMP-neutron cross section (Akerib et al.,

2006a). Both the 29Si and 73Ge that comprise the detector target mass have odd numbers

of neutrons.

Current limits are based on experiments with target masses . 10 kg. These experi-

ments are just now able to probe regions of σSI − mWIMP parameter space for plausible

MSSM models, but limits on spin-independent cross sections are still several orders of mag-

nitude above the cross sections predicted by the simplest UED model. Limits on the spin-
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dependent cross sections are also somewhat above those predicted in the simplest MSSM

and UED models. The next generation of direct detection experiments is slated to have

masses approaching 1000 kg (e.g., DEAP/CLEAN (Hime, 2007), LUX (Gaitskell, 2007),

SuperCDMS (Brink et al., 2005; SuperCDMS Collaboration, 2005; Akerib et al., 2006c),

WARP (Brunetti et al., 2005), XENON1T (Aprile et al., 2002), XMASS (The Xmass Col-

laboration, 2005)) and to be sensitive to event rates . 10−4 events kg−1 day−1. These

experiments should be able to place significant constraints on particle physics models of

dark matter, either by actually observing statistically significant WIMP-nucleon events or

by placing even more stringent upper bounds on the interaction cross section. However,

it should be strongly emphasized that knowledge of the dark matter distribution func-

tion is required for a proper translation between detector event rates and particle physics

models for dark matter. The interested reader should consult the Dark Matter Plotter

webpage (http://dendera.berkeley.edu/plotter) for a relatively complete listing of previous

experimental results and predictions for forthcoming experiments and Gaitskell (2007) for

a summary of detector technologies with an emphasis on noble liquid targets.

Neutrinos from the Earth

WIMPs may accumulate and annihilate within the Sun and the planets. WIMP annihilation

in the solar system will not be observable in photons or charged particles, since none of these

would escape from any solar system body. Instead, the signature of WIMP annihilation

in the solar system will be GeV to TeV neutrinos. The various neutrino observatories

around the planet are sensitive to the muon neutrinos, more specifically, to the Čerenkov

radiation from muons from charged-current interactions of muon neutrinos in and around

the experiment target mass. In general, the expected signals are likely to be strongest for

neutrinos from the Earth and the Sun. In this section, I focus on neutrinos from the Earth.

I will address neutrinos from the Sun in Section 5.3.1. I will outline the calculation of

and the experimental constraints on the neutrino-induced muon event rate, and highlight

important astrophysical uncertainties in predicting and interpreting the muon signal.
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The number of WIMPs N captured in the gravitational potential of a celestial body can

be described by

Ṅ = C − 2Γ, (1.20)

where the capture rate of WIMPs in the body by elastic scattering is defined as

C =

∫
d3x

∫

vfinal<vesc(x)
d3vdΩ

∑

A

dσA

dΩ
nA(x)gAf(x,v, t). (1.21)

As in Eq. (1.19), dσA/dΩ is the WIMP-nucleus elastic scattering cross section for nuclear

species A and gA is the relative speed between the WIMP and a nucleus. The number

density of species A is described by nA(x). The cutoff in the velocity integral reflects the

fact that the WIMP’s speed after scattering must be less than the local escape velocity

vesc(x). The second term in Eq. (1.20) is twice the annihilation rate

Γ =
1

2
CannN

2. (1.22)

The factor of two in Eq. (1.20) refers to the fact that the most popular WIMP candidates

(the neutralino or B(1)) are self-annihilating. The coefficient Cann is proportional to the

WIMP annihilation cross section. As demonstrated in Section 1.1.1, the annihilation cross

section can be estimated from the dark matter density of the universe, assuming that dark

matter consists only of one species of WIMP. Therefore, the annihilation rate is relatively

well-known, mostly independent of specific particle physics models for WIMPs and the

WIMP mass.

If the capture rate C is time independent (i.e., the distribution function is time inde-

pendent), then the number of particles inside a celestial body, and hence, the annihilation

rate, can be determined analytically:

Γ =
1

2
C tanh2(t/τeq), (1.23)

where

τeq = (CCann)−1/2 (1.24)
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is the equilibrium timescale. In the limit that the equilibrium timescale is small or large

relative to the age of the solar system tSS ≈ 4.5 Gyr,

Γ =





1
2C if tSS/τeq � 1

1
2C

2Cannt
2
SS if tSS/τeq � 1.

(1.25)

I would like to emphasize several points concerning the annihilation rate. The annihila-

tion rate depends most strongly on the capture rate of particles in the celestial body, and

the annihilation cross section. The annihilation cross section can be estimated from the relic

density of dark matter. The capture rate is determined by three things: the WIMP-nucleon

elastic cross section, the structure and composition of the body, and the dark matter distri-

bution function. The structure and composition of the Sun (Bahcall et al., 2005) and the

Earth (see, e.g., Anderson, 2005) are well known. The dark matter distribution function is

an astrophysical quantity. Therefore, the only dependence of the annihilation rate on the

particle physics model comes from the WIMP-nucleon elastic scattering cross section.

However, the muon flux through a detector is dependent on several aspects of the un-

derlying particle physics model for both WIMPs and neutrinos. The flux of neutrinos at

the surface of the Earth is (cf. Jungman et al., 1996)

dΦνµ

dE
=

Γ

4πR2
⊕

∑

F

BF
dNF

i

dE
fiνµ(E), (1.26)

where dNF
i /dE is the differential energy spectrum of neutrino species i ∈ {νe, νµ, ντ} re-

sulting from annihilations into channel F , and BF is the branching ratio. The factor fij(E)

(i, j ∈ {νe, νµ, ντ}) describes neutrino oscillations between the center and surface of the

Earth. Neutrino oscillations can be ignored for neutrinos with energy E & 50 GeV, but

oscillations will be important for lower energy neutrinos. Not only will the precise effect

of neutrino oscillation depend on the particle WIMP model, but the uncertainties in the

neutrino mixing parameters are still large enough for there to be a wide margin of possible

effects on the neutrino flux at the surface of the Earth (Cirelli et al., 2005; Barger et al.,

2007a; Blennow et al., 2007; Lehnert & Weiler, 2007). The neutrino flux results in a muon

event rate for a given neutrino experiment that is approximately (cf. Halzen & Hooper,
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2006)

Ṅµ ≈
∫

dy

∫

E>Eth

dE
dΦν

dE

dσν

dy
(E, y)nAR[(1 − y)E]Aeff. (1.27)

In this equation, σν is the muon neutrino-nucleon charged-current cross section to create a

muon, nA is the number density of nuclear species A in and about the experimental volume,

(1−y) is the fraction of the neutrino’s energy that gets transfered to the muon, R[(1−y)E]

is the distance the muon travels before its energy drops below the detector threshold, and

Aeff is the (energy-dependent) effective area of the experiment. The actual calculation of

Ṅµ requires detailed information about the experimental configuration. It is standard in

neutrino telescope literature to express detection limits in terms of muon flux

Φµ ≈ Ṅµ/Aeff (1.28)

in order to compare results of experiments that may have very different configurations.

There are several things to note in the expressions for the neutrino flux at the Earth, Eq.

(1.26), and the muon event rate, Eq. (1.27). The first point is that the characteristic energy

of the muons will likely be far less than the mass of the WIMP. WIMPs do not annihilate

directly to neutrinos in the MSSM, and so neutrinos are the byproducts of decays and

hadron showers (Jungman et al., 1996). Kaluza-Klein particles can annihilate directly to

neutrinos, but the branching fraction is expected to be small (e.g. Hooper & Kribs, 2003). In

addition, the characteristic muon energy will be less than the characteristic neutrino energy.

A typical muon will have an energy only about 1/4 or so of the WIMP mass. Therefore, it

is highly desirable for neutrino experiments to have low energy thresholds. The importance

of low thresholds is illustrated in Figure 1.11, which shows the ratio of flux at several energy

thresholds to the flux above Eth
µ = 1 GeV for a variety of supersymmetric models. A km3

experiment with a threshold of Eth
µ = 10 GeV may be sensitive to only ∼ 50% of muon

flux relative to an experiment with a threshold Eth
µ = 1 GeV for a 100 GeV neutralino. For

a threshold of Eth
µ = 25 GeV, the signal drops to ∼ 10% or less of the signal at Eth

µ = 1

GeV (Bergström et al., 1998a). Another consequence of the relatively low energy of the

neutrinos and muons relative to the WIMP mass is that neutrino oscillations may become
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Figure 1.11: The ratio of the muon event rate above an energy threshold Eth
µ to the event

rate with an energy threshold of 1 GeV in a km3-scale experiment assuming that the muons
result from WIMP annihilation in the Earth. These ratios were computed using only muons
created outside of the experimental volume, not muons created within the detector volume.
This figure is from Bergström et al. (1998a).

important in predicting event rates for massive WIMPs.

No neutrino-induced muons have as yet been identified as having an origin in the center

of the Earth. Current constraints on the muon flux come from two classes of neutrino

telescope. The first consists of the traditional configuration of a tank filled with liquid

scintillator, surrounded by photomultiplier tubes (PMTs). These telescopes are usually

deep underground so as to reduce the incidence of cosmic ray muons. Such experiments

have typical target masses of ∼ 1 − 10 kton, and can have low muon energy thresholds

Eth
µ . 1 GeV. Upper limits from BAKSAN (Boliev et al., 1996), MACRO (Ambrosio

et al., 1999), and Super-Kamiokande (Habig et al., 2001) for the muon flux from WIMP

annihilations in the Earth are typically a few times 1000 km−2 yr−1 (Figure 1.12).

Much better sensitivity to neutrino-induced muons will come from a new class of neutrino
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Figure 1.12: Limits on the flux of muons resulting from WIMP annihilations in the Earth.
The upper (lower) AMANDA line corresponds to the limit for a soft (hard) annihilation
spectrum. The dots mark individual MSSM models. Models in the hatched region are above
the Bernabei et al. (1996) spin-independent cross section limit, which is grossly out-of-date.
This figure is taken from Ahrens et al. (2002).
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telescope. Instead of using an enclosed volume of liquid scintillator, these new experiments

place strings of PMTs inside natural scintillators, namely ocean water and the icecap of

Antarctica. Neutrino-induced muon tracks and energies are identified by the timing and

energy deposited in individual PMTs (Figure 1.13). The advantage of this approach is that

the target volume is drastically increased. The actual sensitivity of these observatories to

neutrinos from WIMP annihilation in the Earth depends on the spacing of PMTs within the

volume of water or ice, and the spacing is driven by the primary goals for the observatories,

which were designed to be sensitive to neutrinos from astrophysical engines (gamma-ray

bursts, supernovae, active galactic nuclei) and to determine the sources of cosmic rays. The

latter is especially interesting since neutrinos will point directly to the source of cosmic rays,

while charged particles produced by the same source will have their directions scrambled

by the Galactic magnetic field. Since the neutrino energies for the astrophysical engines are

thought to be high (TeV-PeV, see Halzen & Hooper (2002) for a discussion), PMTs can

be widely spaced since higher energy muons will have longer tracks. Therefore, for a fixed

number of PMTs, one can increase the effective area (at high energies) of the telescope with

a larger spacing of PMTs. However, this wide spacing means that the telescope has a high

energy threshold.

Even if the overall energy threshold for the observatory is high, the threshold for

neutrino-induced muons from the Earth can be designed to be much lower without sac-

rificing much effective area. The reason for this is that PMTs are connected to each other

vertically on strings, and the PMT spacing on a string is much denser than the spacing

of strings within the volume of the experiment. Since the center of the Earth is a point

source of neutrinos for high mass WIMPs, the muon tracks ought to be parallel (or nearly

so) to the PMT strings. Since the PMTs are more densely spaced in this direction, the

muon threshold is much lower. For example, the initial design of the IceCube experiment

implied an overall muon energy threshold of ∼ 400 GeV and an effective area of 1 km2.

However, the threshold muon energy along a string could be 10 GeV or lower (The IceCube

Collaboration, 2001).
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Figure 1.13: Artistic rendering of a muon passing through the IceCube array. From
http://www.icecube.wisc.edu/index.php

The first generation of experiments of this ilk are the BAIKAL-NT200 experiment using

the waters of Lake Baikal in Russia (Aynutdinov et al., 2006) and the AMANDA experi-

ment (The IceCube Collaboration, 2001; Achterberg et al., 2006; Hill et al., 2006), which

takes advantage of the Antarctic icecap. The Baikal experiment has 192 PMTs on 8 strings

spread out over a surface area of ≈ 2 × 103 m2. The AMANDA experiment was deployed

incrementally, with a final count of 677 PMTs on 19 strings over a surface area of ∼ 0.03

km2. Both have energy thresholds of Eth
µ . 10 GeV. As demonstrated by Figure 1.12, the

limits on neutrinos from the center of the Earth are comparable to those derived from more

traditional neutrino observatories. However, the next generation of experiments ought to

be sensitive to muon fluxes two or more orders of magnitude below the sensitivities of the

first generation of water- and ice-based experiments. The IceCube observatory will even-

tually deploy 4800 PMTs on 80 strings (the goal is completion in 2011) over a geometric

surface area of 1 km2, with an effective volume of 1 km3 (Hill et al., 2006). It will overlap
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the AMANDA experiment, and is projected to be sensitive to muon event rates of a few

tens per square kilometer per year with three years of data. As previously discussed, while

its fiducial energy threshold will be high (Eth
µ ≈ 400 GeV), the muon energy threshold is

much lower if the muon track is parallel to the PMT strings. Several ∼ 0.1 km2 experi-

ments (ANTARES, NEMO, NESTOR) are under construction deep in the Mediterranean

Sea. Because the absorption length of light in this medium is short (≈ 60 m), the PMTs

will need to be more closely spaced than in IceCube. However, this means that the muon

threshold will be lower, too. The NEMO site is a potential location for a km3-volume ex-

periment, KM3Net (Katz, 2006), which is currently in the design stage. For astrophysical

reasons, it is desirable to have a northern hemisphere counterpart to IceCube.

The main uncertainty in predicting and interpreting neutrino and neutrino-induced

muon event rates, given a specific particle physics model for dark matter, is the capture

rate of WIMPs in the Earth. Not only are there the usual uncertainties in the local dark

matter density and velocity distribution (see the next section for a discussion), but for even

modest WIMP masses, the capture rate depends on the part of the dark matter distribu-

tion function that is not accessible to halo dark matter particles in the absence of scattering

processes. Halo particles are not bound to the solar system unless there are processes that

scatter halo particles onto bound orbits. The escape velocity from the solar system at the

Earth’s orbit is v�esc =
√

2v⊕ ≈ 42 km s−1, where v⊕ is the speed of the Earth about the

Sun. Making a Galilean transformation to a frame corotating with the Earth, the minimum

speed for a particle just escaping the solar system is vmin = v�esc − v⊕ ≈ 12.3 km s−1.

Therefore, all halo particles must have speeds v ≥ 12.3 km s−1 with respect to the Earth.

By definition, though, in order for these particles to be captured to the Earth, the speed

of the WIMP after interacting with an atom in the Earth must be below the small escape

speed for the Earth (v⊕esc(R⊕) ≈ 11 km s−1 at the surface of the Earth, v⊕esc(0) ≈ 15 km s−1

at the center). The maximum initial speed a WIMP can have with respect to the Earth

and still be captured is set by the maximum energy transfer from the WIMP to an atom
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with atomic mass A in the Earth. If

Ei =
1

2
mWIMPv

2 (1.29)

is the initial energy of a WIMP of speed v in the frame of the Earth but outside the Earth’s

sphere of influence, then the maximum value v can take is set by

Ef = Ei −Qmax = 0, (1.30)

where Qmax is determined by setting cos θ = −1 in Eq. (B.5). This implies that

v ≤ 2

√
mAmWIMP

mWIMP −mA
v⊕esc, (1.31)

for an atom with mass mA in the Earth. This relation is shown in Figure 1.14. In this

Figure, v⊕esc is set to its value at the center of the Earth, and the scattering atom used is

iron, which dominates the mass of the core of the Earth. Particles with speeds to the left of

the solid line may be captured by the Earth for a given WIMP mass; particles with speeds

to the right cannot be captured in the Earth. One can see that the minimum halo speed

corresponds to a mass mWIMP = 410 GeV. Therefore, for WIMP masses above 410 GeV,

the capture rate in the Earth is completely dominated by any WIMPs that become captured

to the solar system. Since the capture and annihilation rates of particles will likely not yet

have come to equilibrium (Lundberg & Edsjö, 2004), the event rate in neutrino detectors

will scale as Φµ ∝ C2 (see Eq. 1.25), and so any uncertainties in the distribution function

of WIMPs bound to the solar system will be magnified in predicted event rates for neutrino

observatories.

1.3 The Local Dark Matter Distribution Function

As demonstrated in the previous section, both the direct (Eq. 1.19) and the indirect (Eqs.

1.23 and 1.27) event rates depend on powers of integrals over the dark matter distribution

function at the Earth. Both the direct detection event rate and the rate of WIMP capture

in the Earth are proportional to the velocity integral of the distribution function times the
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Figure 1.14: Cutoff speed in the frame of the Earth as a function of WIMP mass (solid line).
WIMPs with speeds to the left of the solid line may be captured by the Earth via weak
interactions. The minimum possible speed of halo particles in the absence of scattering
processes vmin = (

√
2 − 1)v⊕ is marked with the dashed line.

WIMP speed. In order to predict realistic event rates, it is necessary to understand the dark

matter phase space distribution function at the detectors. I will break up the discussion of

the distribution function into several sections. In Section 1.3.1, I discuss the current state

of knowledge about the halo dark matter distribution function. In Section 1.3.2, I will show

how the motion of the Earth through the dark matter halo translates the halo distribution

function to the distribution function at the Earth. In Section 1.4, I summarize previous

attempts to quantify the effects of scattering within the solar system on the distribution

function at the Earth. These sections will lay the groundwork for the rest of this thesis.

1.3.1 The Halo Dark Matter Distribution Function at the Solar Circle

For the purposes of calculating direct and indirect detection rates, it is not necessary to

know the global structure of the dark matter distribution function in the Galaxy. It is

only necessary to know the distribution function in the vicinity of the Sun. Therefore, even

though equilibrium distribution functions f(x,v) are generally not separable in the form
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fx(x)fv(v) on scales much smaller than the scale of variation of the number density, the

distribution function can be described by the local mass or number density of WIMPs and

their velocity probability distribution. In order to understand the distribution function of

dark matter in a small region along the Sun’s orbit through the halo, I divide the discussion

of what is known or inferred about the distribution function into a section on the dark

matter density and a section on the velocity distribution of halo WIMPs. I will also address

the question of substructure in the Milky Way.

The WIMP mass density ρWIMP

What methods can be used to infer the existence of a dark component in the Milky Way?

Since dark matter is obviously not visible, it is necessary to use the kinematics of observable

objects to map the gravitational potential of the Galaxy. If the potential of the Galaxy is

roughly axisymmetric, and we are concerned with the potential in and near the plane

of the Milky Way disk, then the gravitational potential Φ(x) can be approximated by

Φ(x) = ΦR(R) + Φz(z). Here, R is the cylindrical radial coordinate (R = 0 is the Galactic

center) and z is the height above the plane of the disk. Estimates of ΦR (or the force

FR = −dΦR/dR) throughout the disk and Φz at the position R0 of the Sun (relative to the

Galactic center) are combined to yield estimates of the local dark matter density ρWIMP. I

will discuss some results from the literature on each component of the potential in turn.

As described in Section 1.1.1, early evidence for the existence of dark matter came from

the rotation curves of spiral galaxies. Rotation curves probe the quantity

vc(R) =

[
R
∂Φ

∂R

]1/2

(1.32)

= [R |FR|]1/2 . (1.33)

The total rotation curve has contributions from both the disk (d) and the halo (h),

vc(R) =
[
v2
d(R) + v2

h(R)
]1/2

. (1.34)

It is important to note that the “disk” component is not necessarily synonymous with

“baryonic matter”. For a time in the 1980’s, it appeared that there might be a dark matter
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component to the disk, although this is now highly disfavored (Kuijken & Gilmore, 1991;

Holmberg & Flynn, 2000, 2004). It is also clear that the relative contributions to the

rotation curve from the disk and halo cannot be determined by the rotation curve alone,

thus other data are needed to determine the halo contribution.

The rotation curve of the Galaxy is fairly well determined, at least within the solar

circle. The shape of the rotation curve has been established by observations of atomic

and molecular gas interior to the solar circle, and by tracers such as planetary nebulae in

the outskirts of the visible disk (see Section 9.2 of Binney & Merrifield, 1998, for a more

in-depth discussion). The absolute calibration of the rotation curve is determined using

estimates of the circular speed at the radius R0, called the velocity of the Local Standard of

Rest vLSR. There are several methods to determine this quantity. A review of International

Astronomical Union (IAU) standard values for Galactic quantities lists many techniques to

determine vLSR, two of which involve either measuring Oort’s constants or measuring the

21-cm emission of atomic gas clouds in the outer reaches of the Galaxy (Kerr & Lynden-

Bell, 1986).

The method of determining the local circular velocity with Oort’s constants makes use

of the epicycle approximation of orbits in an axisymmetric potential (see Section 3.2.3

of Binney & Tremaine, 1987, and Section 10.3.3 of Binney & Merrifield, 1998, for longer

discussions). Oort’s constants, called A and B, quantify the velocity shear (A) and vorticity

(B) of stars on nearly circular orbits about the Galactic center. Estimates of these constants

are derived from both line-of-sight velocities and proper motions of stars near the Sun. The

velocity of the Local Standard of Rest is then given by vLSR = R0(A−B).

The velocity of the Local Standard of Rest can also be estimated using observations of

H i clouds in the outskirts of the Milky Way (Knapp et al., 1978; Gunn et al., 1979). The

line-of-sight speed of an object in the Galaxy is

vlos =

[
vc(R)

R0

R
− vLSR

]
sin l, (1.35)
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where l is the galactic longitude. The first term in Eq. (1.35) vanishes for large radii

R� R0, and so

vlos ≈ −vLSR sin l. (1.36)

Therefore, 21-cm emission displaced by −vLSR sin l from the rest frame is the superposition

of emission from all distant atomic gas clouds along the line of sight, thus making even faint

emission observable. Knapp et al. (1978) modeled the 21-cm emission, and found it to be

most compatible with a local circular velocity of vLSR ≈ 220 km s−1.

The second piece of dynamical data is an estimate of Φz(z) (or, rather, the force Fz =

−dΦz/dz) in and near the plane of the Galaxy. The premise is to map out the potential

using a sample of a steady-state tracer population, usually F or K stars. Properties of the

tracer population and the gravitational potential (or force) are linked via the Jeans equation

expressed in cylindrical coordinates

1

R

∂(νvRvzR)

∂R
+
∂(νv2

z)

∂z
= −νdΦz

dz
(1.37)

= νFz, (1.38)

where ν(z) is the number density of the tracer population, v2
z is the mean-square speed in

the z-direction, and vRvz is the velocity-averaged R−z moment of the velocity distribution.

Different groups have used different estimators to derive Fz from their datasets (Bahcall,

1984a,b; Kuijken & Gilmore, 1989a,b,c, 1991; Gould, 1990; Holmberg & Flynn, 2000, 2004).

It should be noted that, while ν(z) and v2
z can be reasonably well determined from the tracer

datasets, vRvz is poorly constrained outside of the z = 0 midplane (Kuijken & Gilmore,

1991). Therefore, Fz is often estimated using only the second term of Eq. (1.37), although

some groups estimate corrections to Fz using estimates of the velocity ellipsoid outside of

the plane. Once Fz has been estimated, the mass surface or volume density can be estimated
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using Poisson’s equation and the observed circular velocity curve:

1

R

d

dR

(
R

dΦR

dR

)
+

d2Φz

dz2
= 4πGρ (1.39)

−
[

1

R

d(RFR)

dR
+

dFz

dz

]
= 4πGρ (1.40)

−
[
− 1

R

dv2
c

dR
+

dFz

dz

]
= 4πGρ, (1.41)

such that the total volume density (including baryonic and dark matter) in the plane of the

Galaxy is

ρ(R0, 0) = − 1

4πG

[
dFz(0)

dz
− 1

R0

dv2
c (R0)

dR

]
(1.42)

and the surface density at a height z above the plane is (e.g., Binney & Merrifield, 1998)

Σ(R0, z) = 2

∫ z

0
dz′ρ(R0, z

′) (1.43)

= − 1

2πG

[
Fz −

z

R

dv2
c (R0)

dR

]
. (1.44)

It is common for densities to be expressed in terms of the surface density because it involves

one less derivative of the data. However, the volume density of dark matter is what is needed

for WIMP experiments.

This method can yield estimates for the total surface density of the Galaxy below some

height. In order to separate the contributions from disk and halo matter, it is necessary

to fit disk and halo models not only to the tracer data, but to the Galactic rotation curve.

One can then ask: Is the density in the disk consistent with star and gas counts in the

Galactic disk? What halo models are consistent with both types of data, and what do

these imply for the local WIMP volume density ρWIMP? Holmberg & Flynn (2000, 2004)

demonstrate that the dynamical estimate for Σdisk is consistent with star counts and gas

content in the solar neighborhood. This indicates that it is unlikely that there is much (if

any) dark matter confined to a disk in the Milky Way. Bergström et al. (1998b) fit a variety

of N -body inspired spherical halo models to the Galactic rotation curve, using a variety of

disk models constrained by dynamical estimates of the disk surface density, to determine

plausible ranges for ρWIMP. They find that WIMP mass densities ρWIMP = 0.2 − 0.8
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GeV cm−3 are consistent with the dynamical data. The value ρWIMP = 0.3 GeV cm−3 is

considered the canonical value but there is at least a factor of several uncertainty in this

parameter. It is very unlikely that ρWIMP = 0 (Kamionkowski & Koushiappas, 2008).

The uncertainty in the direct and indirect detection rates is simple to compute. A factor

of 4 separates the lower and upper bounds of the local dark matter density. Therefore, since

the direct detection rate is proportional to the density, there is a factor of 4 uncertainty

in the direct detection rate for a given WIMP mass and cross section. Since the indirect

detection rate goes as the density squared if the capture and annihilation rates are not in

equilibrium in the Earth, the uncertainty in the dark matter density yields a factor of 16

uncertainty in the indirect detection rate.

Dark Matter Velocity Distribution

It is impossible to glean information about the velocity distribution of WIMPs directly

from observations. Instead, one must deduce the velocity distribution from self-consistent

equilibrium models of the halo distribution function. Unfortunately, quite different distri-

bution functions can yield similar spatial distributions of matter (see Chapter 4 in Binney

& Tremaine, 1987). It is necessary to examine cosmological N -body simulations of the

formation of Milky Way-sized halos, and hope that these simulated halos are close enough

to the actual Milky Way halo for results to be transferable, and that the poorly understood

effects of baryonic infall do not grossly change the dark matter distribution.

In order to understand the effects of mergers on the velocity distributions within a halo,

Helmi et al. (2002) perform a dark matter-only N -body simulation of a cluster-sized halo.

To make the comparison with a Milky Way-mass halo, they simply scale the whole simu-

lation down. They find that the velocity distribution of dark matter particles is the result

of hundreds of thousands of overlapping tidal streams. At the solar circle, this velocity

distribution is well described by a multivariate Gaussian except at the highest speeds. The

simulations of Moore et al. (2001) of a Local Group-type halo also indicate that dark matter

at the solar circle can be approximately described as having a Gaussian velocity distribu-
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tion. Both groups suggest that the velocity ellipsoid at the solar circle is approximately

isotropic. The effects of velocity anisotropy on direct detection rates have been examined,

e.g., by Green (2002). In general, the effect of anisotropy on exclusion limits is fairly small.

However, the biggest differences in the differential event rate dR/dQ among the models

occur for small Q. Therefore, Green (2002) has suggested that low threshold experiments

will be more sensitive to, or the analysis complicated by, velocity anisotropy.

Substructure

There are two types of dark matter substructure that potentially have a significant impact on

WIMP detection rates and their interpretation. The relatively more concretely established

type of substructure consists of hierarchically grown subhalos which have been accreted

by the Milky Way. Several groups have simulated Milky Way-mass (or clusters scaled to

match the Milky Way mass) halos at high resolution in order to track the accretion and

evolution of very small subhalos within the Galaxy. In order to understand the results of

the simulations, it is necessary to introduce several scales. Our Galaxy is thought to reside

in a halo of mass Mdm ≈ 2 × 1012 M� with a virial radius rvir ≈ 200 − 400 kpc. The Sun

is located a distance R� ' 8 kpc from the Galactic center (see Section 7.4.1 in Binney &

Merrifield, 1998, and references therein). Therefore, substructures that may be observable

by either direct or indirect detection lie within the inner 5% of the virial radius. Of the

various simulations to be discussed below, Diemand et al. (2007) can resolve subhalos of

Msub = 4×106 M� (= 2×10−6Mdm) and Moore et al. (2001) can identify Msub = 108 M�.

Helmi et al. (2002), who simulate a cluster and rescale results to the Milky Way, can identify

parent halos down to Msub = 105.5 M�.

None of the simulations above show much evidence of substructure within the solar circle.

Diemand et al. (2007) find five subhalos with maximum circular velocities (a proxy for the

pre-accretion mass of the subhalo, since a substantial fraction of the original mass is tidally

stripped, but the maximum circular velocity remains relatively unchanged) of > 10 km s−1

inside r < 0.1rvir. However, this group suggests that the true number of subhalos within
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0.1rvir could be significantly higher due to the finite resolution and large force softening

length, which wash out substructures in dense environments (Moore et al., 1996; Taylor &

Babul, 2005). This phenomenon of “overmerging” is also cited as contributing to the lack

of substructures in the innermost parts of the Moore et al. (2001) and Helmi et al. (2002)

simulated galaxy halos. It should also be noted that the number of halos with mass above

the subhalo resolution threshold goes as N(Msub > Mthresh) ∝ M−1
sub, in which case both

the number of subhalos and the mass in subhalos diverge as Msub → 0 (Diemand et al.,

2007). Thus, it is possible that there is significant substructure within the solar circle, but

it has yet to be properly simulated.

Substructures are relevant for direct and indirect detection in the following ways.3 First,

one can think of dark matter in the solar circle as having smooth and lumpy components. If

the smooth fraction is large relative to the lumpy fraction, then the signal in both types of

experiments is dominated by the smooth component. Any signal from the lumpy component

depends on the number density, mass, and size of such structures along the Sun’s orbit,

and whether the solar system happens to be inside a lump, or not. As the smooth fraction

decreases, the density of dark matter in the solar system will become increasingly stochastic.

The direct detection rate is sensitive to the real-time density of dark matter at the Earth,

averaged at most over several years. Therefore, if dark matter is extremely clumpy, chances

are that direct detection experiments will see nothing, with a small probability that there

will be a huge signal. The case of indirect detection is more complicated. The capture

rate will be a function of time, thereby changing the solution of the annihilation rate from

its constant C form, Eq. (1.23). However, the neutrino-induced muon rate is governed by

the capture and annihilation rates on timescales of the age of the solar system. Therefore,

naively one would expect that the indirect detection rate should be largely insensitive to the

presence of lumps, although Kamionkowski & Koushiappas (2008) suggest that the signal

may be boosted since the subhalos will be far denser than the local smooth dark matter

3This discussion refers only to unbound halo WIMPs. Substructure has almost no effect on the distribu-
tion of bound WIMPs to be discussed below in Section 1.4 since the long lifetime of bound WIMPs means
that the distribution is sensitive only to the time-averaged properties of the halo WIMP population.
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density.

An interesting source of dark matter substructure has its origins near the Big Bang itself.

Recall from Section 1.1.1 that the smallest dark matter structures to form in the universe

are of order the free-streaming scale at the time of matter-radiation equality. This is due

to the fact that dark matter density perturbations cannot grow until the universe becomes

matter-dominated and that density perturbations on scales below the free-streaming length

get washed out. One can therefore ask, what is the smallest dark matter halo that can form

assuming a SUSY or Kaluza-Klein WIMP? Using linear perturbation theory, several authors

calculated the dark matter power spectrum at scales near the free-streaming scale assuming

SUSY physics (plus a standard spectrum of primordial fluctuations), and determined that

the power spectrum sharply cuts off at mass scales of approximately the Earth mass M⊕

(Hofmann et al., 2001; Berezinsky et al., 2003; Green et al., 2004, 2005). This implies

that the first non-linear objects (i.e., the smallest and first dark matter halos) should also

have masses of order M⊕. Loeb & Zaldarriaga (2005) found that the acoustic oscillations

in the photon-baryon fluid also suppress the dark matter power spectrum on small scales,

effectively increasing the minimum possible halo mass by a factor of a few. Another unique

feature of these “microhalos” is that they form almost monolithically, not hierarchically,

over several orders of magnitude in mass. This is because the condition for a perturbation

to collapse is related to σ(M), the rms density fluctuation in linear theory, which usually is

larger at smaller M . However, near the low-mass cutoff of the dark matter power spectrum,

σ(M) is nearly independent of M .

The formation of the first halos has also been studied withN -body simulations (Diemand

et al., 2005, 2006). One simulation focused on “average” parts of the universe, simulated

from z = 350 to z = 26 (Diemand et al., 2005). The authors of this simulation found

that about 5% of the dark matter was contained in Earth-mass microhalos by z = 26,

in good agreement with analytic work. They also consider how many subhalos exist in

the Milky Way halo by extrapolating the z = 0 subhalo mass function down to masses

Msub = 10−6 M�, the mass of the smallest microhalos, neglecting any tidal disruption of
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the smallest halos. Using this extrapolation, they find a whopping 1015 subhalos in the

Milky Way at a density of nsub = 500 pc−3, with approximately half of the dark matter

residing in subhalos. It is expected that Earth hits a microhalo approximately every 104 yr,

and spends about 50 yr passing through the halo. Therefore, the Earth is in a microhalo

about 0.5% of the time, and during this period the WIMP number density is increased by

a factor of ≈ 100 (assuming that the virial density of a microhalo forming at z = 60 is 200

times the critical density at that time, and assuming that H0 = 70 km s−1 Mpc−1).

The critical issue for direct detection experiments, which are sensitive to fluctuations of

dark matter flux on scales . 1 yr, is how many of these microhalos survive at the solar circle.

There are several means of disrupting microhalos. Microhalos may be disrupted in the era

of the nearly simultaneous (monolithic) halo formation across mass scales. Diemand et al.

(2006) identify an unusually overdense fluctuation at high redshift (with initial conditions

set by the power spectrum of Green et al., 2004), which they simulate at high resolution to

z = 75. At the end of the simulation, the halo has a mass Mhalo = 0.01 M�, several orders

of magnitude larger than the smallest halos. Because this halo grew so rapidly, instead of

the more leisurely accretion of later times, 20 − 40% of the subhalos have disintegrated by

z = 75. Various authors have examined microhalo mass loss at later times (Zhao & Silk,

2005; Berezinsky et al., 2006; Angus et al., 2007; Goerdt et al., 2007; Green & Goodwin,

2007), focusing on mass loss or disruption by stars and dark matter substructure. Since it is

impossible to run a full N -body simulation across the ∼ 1018 orders of magnitude between

the microhalo and Milky Way masses, these authors instead focus on trial orbits through the

Galactic potential, and use the impulse approximation to treat microhalo-stellar encounters.

There are some discrepancies among the treatments, but it is generally found that most of

the mass is stripped from microhalos. The very centers of the microhalos, being extremely

dense, may survive at the solar circle to the present. However, it is not clear how much

additional stripping occurs in the process of hierarchical structure formation, and it is not

clear how realistic or accurate the predictions from analytic models of stripping are.

There are several major consequences of the work on microhalo disruption. Assuming
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that the authors are correct that most of the microhalo mass is stripped at the solar circle,

the lumpy fraction of dark matter is not large. Therefore, the direct detection signal is

largely immune from any large fluctuations in signal due to microhalo lumpiness. However,

when microhalos lose mass or become completely disrupted, they leave tidal streams. These

streams can retain their filamentary morphology for> 4 Gyr (the maximum time that Angus

& Zhao, 2007, follow microhalos in the Milky Way), and are quite dynamically cold. It is not

clear how much these streams will be heated on timescales of order the age of the universe,

given the crudeness of microhalo simulations (Angus & Zhao, 2007; Zhao et al., 2007). If the

streams survive on long timescales, their filling fraction is thought to be & 5% (Zhao et al.,

2007). Therefore, it is possible that a large percentage of the dark matter at the solar circle

consists of overlapping streams of dark matter. The small scale (sub-parsec) structure of the

microhalo tidal stream could make it difficult to interpret dark matter properties, such as

the WIMP mass, from the next generation of direct detection experiments (Green, 2007).

This is due both to the uncertainty in the density enhancement as well as the unknown

velocity of the streams in the halo.

1.3.2 Motion of the Earth in the Halo

The unbound dark matter distribution function at the Earth f⊕ can be written as a function

of the halo distribution function fhalo,

f⊕(x,v) = fhalo(v + v� + v⊕), (1.45)

where v is a geocentric velocity, v� is the Sun’s velocity with respect to the Galactic

center, and v⊕ is the velocity of the Earth relative to the Sun. In this Section, I will

outline estimates for the both the Sun’s and Earth’s motion, what the uncertainties are,

and interesting implications of the Earth’s motion.

The Sun’s Motion About the Galactic Center

The Sun’s motion about the Galactic center can be broken into two components: the

circular motion of the LSR, and the peculiar velocity relative to the LSR (often simply
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called “solar motion”). Methods for determining the motion of the LSR were summarized

in the discussion on ρWIMP. The best estimate for the local circular speed, adopted by the

IAU, is vLSR = 220 ± 20 km s−1 (Kerr & Lynden-Bell, 1986). The solar motion relative to

the LSR can be estimated by measuring either the line of sight velocities or proper motions

of stars in the solar neighborhood, since the mean velocity of a given population near the

Sun should be zero relative to the LSR. Briefly, in the case of line of sight measurements

(see Binney & Merrifield, 1998, for a more thorough discussion), the speed of a star in a

given direction x̂ is

vlos = (v − v�,pec) · x̂, (1.46)

so that the average line of sight speed for a population of stars is

〈vlos〉 = −v�,pec · x̂. (1.47)

Using data gathered with the Hipparcos space astrometry mission, a telescope specifically

designed for precision astrometry, Dehnen & Binney (1998) estimated that the solar motion

is

v�,pec = (U, V,W ) = (10.0 ± 0.36, 5.2 ± 0.62, 7.17 ± 0.38) km s−1, (1.48)

where U points radially inward toward the Galactic center, V is in the direction of Galactic

rotation, and W points in the same direction as the north Galactic pole. How do the uncer-

tainties in the solar velocity with respect to the Galactic center affect the interpretation of

direct and indirect detection signals? In this discussion, I will focus on the direct detection

rate, although since the calculation of the capture rate in the Earth has the same form as

the integral over the differential direct detection rate, many of the results will be similar.

The effects of the uncertainty in the Sun’s motion on the interpretation of direct detec-

tion experiments has been examined in detail by Green (2007). To illustrate her findings,

it is useful to examine the form of dR/dQ (Eq. 1.19) for a simple distribution function. As

an example, one can use a Maxwellian distribution function

fhalo(x,u) =
1

(2πσ2)3/2

ρWIMP

mWIMP
e−u

2/2σ2
, (1.49)
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for the halo, with σ described by Appendix A (for the distribution function called f in

Eq. A.4), and u the velocity in the Galactocentric frame. In heliocentric coordinates, the

distribution function is

fs(x,v) =
1

(2πσ2)3/2

ρWIMP

mWIMP
e−(v+v�)2/2σ2

. (1.50)

For illustrative purposes, I calculate dR/dQ using this heliocentric expression well outside

the gravitational well of the Sun, and without accounting for the Earth’s orbital motion.

The results should generalize to a more careful treatment of the distribution function. In

Figure 1.15, I plot the ratio

dF (v�)

dQ
=

dR(v�)/dQ

dR(v� = 0)/dQ
, (1.51)

the ratio of the differential event rate for a given value of the Sun’s speed relative to the

rate if the Sun were motionless with respect to the dark matter halo, for a variety of

WIMP masses. One can see that the event rate is suppressed for small energy transfers,

pushing signal into the higher energy bins. The slope of the event rate ratio increases with

increasing v�. This is simply due to the fact that there are more high speed particles in

the heliocentric frame, which can generate larger energy transfers. There is an approximate

degeneracy between v� and mWIMP. As demonstrated in Figure 1.15, the differential event

curve for mWIMP = 200mp and v� = 180 km s−1 is similar to that of mWIMP = 500mp and

v� = 260 km s−1.

Therefore, if the true speed of the Sun about the Galactic center were 180 km s−1, but

the differential event rate data were analyzed using v� = 220 km s−1 as a prior, one would

systematically underpredict the WIMP mass. Green (2007) finds that the shift in WIMP

mass relative to the Sun’s speed can be described by

∆v�
v�

= − ∆mWIMP

mWIMP (1 +mWIMP/mA)
. (1.52)

The effect of uncertainties in the Sun’s speed for indirect detection is less clear, in large

part because there is such a spread in possible branching fractions for WIMP annihilation

modes at a given WIMP mass. It may not be possible to disentangle small errors in v� from
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Figure 1.15: The ratio of the differential event rate dF (v�)/dQ for several choices of WIMP
mass (in units of the proton mass), and for v� = 0 (black line), v� = 100 km s−1 (red dots),
v� = 180 km s−1 (blue dash), v� = 220 km s−1 (green long dash), and v� = 260 km s−1

(cyan dot-dash). The target mass is assumed to be 73Ge.
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mWIMP unless the WIMP mass is near a value where an annihilation begins to be allowed,

or unless there exists another method to determine mWIMP.

Because of the motion of the Sun, even an isotropic halo distribution function is aniso-

tropic in the heliocentric frame. This means that extra care must be taken in transforming

the distribution function into the geocentric frame. However, for calculations of the indirect

detection rate, it is often sufficient to consider the angle-average of Eq. (1.50), since the

indirect detection rate is sensitive to the integral of the capture rate over the lifetime of

the solar system, while the period of the Sun’s orbit about the Galactic center is ≈ 200

Myr. As will be discussed in Chapter 2, the angle-averaged distribution function is not

quite equivalent to the time-averaged distribution function, but it is close.

The Earth’s Orbit

While it is necessary to include the Earth’s orbital motion when computing indirect and

direct detection rates, it does not introduce much uncertainty in the distribution function,

especially relative to the other complexities inherent in estimating the halo distribution.

However, the short-period nature of the Earth’s orbit leads to an annual modulation of the

direct detection signal. As we saw in the discussion of the Sun’s motion, changes in the

magnitude of the Sun’s speed lead to changes in the shape of the differential event rate.

As the Earth moves about the Sun, its velocity vector changes its orientation with respect

to the Sun’s motion. When the two vectors are most closely aligned, the Earth has its

maximum motion with respect to the dark matter halo; when the Earth’s motion is roughly

anti-aligned with the Sun’s velocity, the Earth has its slowest speed relative to the Galactic

center. Therefore, the expected differential direct detection rate is a function of the location

of the Earth along its orbit. Freese et al. (1988) suggested that the annual modulation in

the spectrum of event rates would be easier to detect than the absolute spectrum since the

annual modulation could be detected in experiments that did not have good background

discrimination.

Authors have investigated the effects of velocity dispersion anisotropy (e.g., Ullio &
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Kamionkowski, 2001), uncertainty in the Sun’s motion, and approximations of the Earth’s

orbit (Green, 2003) on the amplitude and phase of the annual modulation rate. This became

a popular subject in the literature when the DAMA collaboration announced a detection

of annual modulation (Belli et al., 2000; Bernabei et al., 2000b), which appeared to be in

conflict with the exclusion limits of all other experiments running at the time. However,

while all the effects listed above could significantly alter the phase and amplitude of the

annual modulation signal, it has been impossible to reconcile the DAMA results with the

other experiments unless mWIMP ≈ 10 GeV (Ullio et al., 2001b; Savage et al., 2004; Gondolo

& Gelmini, 2005). Since DAMA, the focus of direct detection experiments has been on event

discrimination, an effort to determine the absolute differential event rate in analysis windows

predicted to have little or no backgrounds.

1.4 Corrections to the Distribution Function: Effects Within

the Solar System

Without scattering mechanisms, all dark matter particles are unbound to the solar system.

There are, however, two types of scatters that may occur. Since WIMPs have a non-

zero interaction with baryons, WIMPs can scatter elastically in the Sun, planets, or other

baryonic matter such as dust. I call this “weak scattering.” Since the Sun is by far the

most massive reservoir of baryons, and has the deepest potential well, it will also scatter

the most dark matter. Secondly, particles can be gravitationally captured into the solar

system. Even though two-body gravitational interactions conserve energy, the energy of a

particle will not generally be conserved as it traverses N -body systems with N > 1. If the

newly bound particles have a long lifetime before being ejected or thermalized in the Sun,

then they can provide a significant contribution to the low velocity phase space distribution

function. Since, in particular, the indirect detection event rate is extremely sensitive to the

number density of particles at low speeds, a correct calculation of these processes is vital.

Up to the present, analytic approximations have been used to estimate the size of the bound
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particle population. I review these approaches below.

1.4.1 Weak Scattering

If the Sun had no surrounding planets, dark matter particles that scattered elastically in

the Sun would either be scattered onto orbits unbound to the Sun or would scatter onto

bound orbits that quickly thermalize from repeated elastic scattering in the Sun. A WIMP

detector located on the Earth’s orbit would find a small signal due to particles that originally

scattered onto Earth-crossing orbits, which survive for a characteristic time t ∼ PWIMP/τ ,

where PWIMP is the characteristic WIMP orbital period and τ is the optical depth of the

Sun. However, the Sun is not a lonely body in free space, but enjoys the company of

8 (as per the IAU) planets, as well as a number of moons, asteroids, comets, and dust.

The planets influence the motion of WIMPs in the solar system by their gravity, and can

significantly change the distribution function of bound WIMPs at the location of the Earth.

Damour & Krauss (1999) identified a secular mechanism for dramatically extending the

lifetimes of some bound particles to the solar system. This mechanism is called “Kozai

cycling.” Kozai (1962) examined the Hamiltonian of a system with a central star M , an

outer planet M ′ on a circular orbit, and an asteroid m � M,M ′ with its orbit entirely

interior to that of the outer planet. In order to walk through Kozai’s argument, it is useful

to introduce the Delaunay coordinates. In solar system dynamics, it is common to express

the Hamiltonian not in the usual position and momentum coordinates q and p, but in terms

of the canonical Delaunay variables. The Delaunay momenta are

L =
√
GNMa (1.53)

G = L
√

1 − e2 (1.54)

H = G cos I (1.55)

for a particle with semi-major axis a, eccentricity e, and with an orbit inclined an angle

I with respect to the reference plane, and in the limit that M � M ′. Newton’s constant

is labeled as GN . The momentum G is the magnitude of the particle’s specific angular
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momentum J/m, while H is the z-component of the specific angular momentum, with the

z-direction defined as the direction orthogonal to the reference plane. The corresponding

Delaunay coordinates are

l = n(t− t0) (1.56)

g = ω (1.57)

h = Ω, (1.58)

where n = 2π/P is the mean motion of a particle with period P = 2π
√
a3/GNM , t0 is

the time of pericenter passage, ω is the argument of the pericenter (the angle between

the pericenter and the intersection between the reference and orbital planes, the ascending

node), and Ω is the longitude of the ascending node (the angle between a reference direction

in the reference plane and the ascending node). A graphical description of the latter angles

can be found in Figure 2.13 of Murray & Dermott (2000).

Kozai’s observation was that if the Hamiltonian of this particular configuration of the

three-body problem were averaged over the short period variables l of the planet and asteroid

(i.e., averaged over both the mean motion of the asteroid and the planet), the Hamiltonian

expanded to quadrupole order would be independent of both the l and the h coordinates if

aplanet � a. Note that this sort of averaging can only be done if resonant or short timescale

effects are unimportant. Since Hamilton’s equations of motions for a Hamiltonian H with

canonical coordinates qi, pi are

q̇i =
∂H
∂pi

(1.59)

ṗi = −∂H
∂qi

, (1.60)

this implies that L, also the particle energy E, is secularly conserved since the time-averaged

Hamiltonian no longer depends on l. In addition, the momentum H is conserved since the

time-averaged Hamiltonian is independent of h. The Hamiltonian will still depend on g,

so the momentum G is not conserved. However, if the potential energy of the planet

is expanded only to the quadrupole term, the asteroid Hamiltonian per unit mass has a
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harmonic dependence on g, such that (cf. Fabrycky & Tremaine, 2007)

H =

{
−G

2
NM

2
�

2L2
− G2

NM�M
′

8

L4

L′3G′3

[
5 + 3(H/L)2

]}
(1.61)

+
3

4
G2

NM�M
′
L2G2

L′3G′3

+
15

8
G2

NM�M
′
L4

L′3G′3

[
1 − (G/L)2 − (H/G)2 + (H/L)2

]
sin2 g,

where the primed quantities refer to the planet. The first line of Eq. (1.61) contains the

parts of the Hamiltonian that do not depend on G or g, the second line contains the part

that depends on G but not g, and the last part of the Hamiltonian depends on both G and

g. This Hamiltonian has some special features: above a critical inclination Icrit ≈ 39.2o,

solutions exist for librations in g, not just circulation. There are also unstable fixed points

at e = 0 and g = ±π/4,±3π/4. While G can oscillate cyclically in circulating solutions of

H, generally the large oscillations in G occur if g is librating about a fixed point. Therefore,

asteroids will high eccentricity can cycle through much smaller values. Since H is conserved,

the cycles in eccentricity are accompanied by oscillations in the inclination of the orbital

plane.

Damour & Krauss’s idea was to apply the idea of Kozai cycles to particles captured

in the Sun. Any particle on a Kozai cycle survives much longer because during most of a

Kozai cycle the perihelion is larger than the solar radius. In particular, they applied this

idea to particles that initially scattered in the outer parts, r > 0.5R� of the Sun. The

reasons for focusing on this region were twofold, but both follow from the fact that the

mass of the Sun is very centrally concentrated (M(r = 0.5R�) = 0.9M�). This means, for

one, that perihelion precession is fairly slow in the outskirts of the Sun, so it does not kill

the Kozai cycles, which require a near-Keplerian potential. Secondly, because the density

of solar matter is substantially lower in the outer part of the Sun, the optical depth is also

much lower in the outer layer of the Sun than it is near the center. This means that the

survival time is much higher for particles that only pass through the outer part.

Damour & Krauss (1999) estimate the bound dark matter distribution function in the

following way. First, they focus only on particles on Kozai cycles with initial scatters at
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r > 0.55R� up to semi-major axis a < 2.6 AU. This upper bound is set by the orbit of

Jupiter, which is on an approximately circular orbit of aJ = 5.2 AU. Since e ≈ 1 for Earth-

crossing orbits which originate in the Sun, any captured particle with a(1 + e) ' 2a > aJ

will cross Jupiter’s orbit. All Jupiter-crossing orbits are ignored because they are likely

to be short-lived, as are all particles which initially scatter at r < 0.55R�. All particles

initially scattered in the outskirts of the Sun on orbits for which the perihelion never exits

the Sun are also ignored. To find out how many particles can exit the Sun, Damour &

Krauss add a term to the Hamiltonian, Eq. (1.61) to represent the perturbation due to

the non-Keplerian nature of the Sun. This term is a function of G2 (see their Section 3).

They use this Hamiltonian to determine for an initial semi-major axis, inclination, and

eccentricity (or G) if the particle remains in the Sun (i.e., G always remains below some

critical value) or if G may become large enough to exit the Sun. If the particle can exit the

Sun, it may either have circulating or librating g. Since the initial eccentricity is so great,

even circulating solutions will have relatively large oscillations in G (see their Figure 1).

Next, they assume that all particles on Kozai cycles (circulating or librating) survive at

least the lifetime of the solar system without rescattering in the Sun onto non-Earth-crossing

orbits. This is assumed regardless of the strength of the WIMP-nucleon interaction. The

velocity distribution of these dark matter particles in the geocentric frame is estimated by

weighting the initial distribution of semi-major axes by the probability that the particle is

Kozai-cycling and the time a particle with initial eccentricity e spends between r and r+dr

centered on r = 1 AU.

Given these assumptions, Bergström et al. (2001) estimate the geocentric velocity dis-

tribution to have the form of Figure 1.16 with λ = 1, the case for which the z-component

of angular momentum is exactly conserved (see Bergström et al., 1999, for details on λ and

calculations). The upper and lower cutoffs to the distribution are fairly straight-forward

to understand. The lower velocity cutoff arises from particles that just barely are Earth-
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Figure 1.16: The estimated geocentric distribution function for Kozai-cycling dark matter
particles. The case of λ = 1 corresponds to absolute conservation of H. In the case of
λ = 2, Bergström et al. (1999) allow small variations in H. This figure is originally from
Bergström et al. (2001). The version of this plot resulting from my simulations is shown in
Figure 5.2.

crossing, a = 0.5a⊕. The heliocentric speed of a particle with semi-major axis a is

v(a) =

[
2 −

(
a

a⊕

)−1
]1/2

v⊕. (1.62)

This means that the heliocentric speed for a particle of a = 0.5a⊕ is v(0.5a⊕) = 0. Trans-

forming to the geocentric frame, vg(0.5a⊕) = v⊕ ≈ 29.8 km s−1. The upper limit is set

by the upper limit of the semi-major axis range, a = 2.6a⊕. The heliocentric speeds of

these particles is v(2.6a⊕) = 1.27v⊕ = 37.9 km s−1. Since the orbits are initially radial, the

geocentric speed is vg(2.6a⊕) =
[
v2
⊕ + v2

]1/2
= 48.2 km s−1.

This population of bound WIMPs makes only a modest contribution to the direct detec-

tion rate, but could dominate the indirect detection rate. Damour & Krauss (1999) state

that the bound particles can double the direct detection signal for large WIMP-nucleon

cross sections. However, most of the large spin-independent cross sections they considered
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have been excluded since the appearance of the original Damour & Krauss paper. The

consequences for indirect detection are more extreme since all the bound particles populate

a fairly narrow region of phase space. Bergström et al. (1999) found that the bound popu-

lation could increase the neutrino-induced muon rate by a factor of 100 for WIMP masses

mWIMP = 60 − 130 GeV, with the mass range corresponding to the upper and lower limits

of WIMP speed in the geocentric frame, using Fig. 1.14 to translate between mass and

velocity limits for capture in the Earth.

Given these tantalizing results, it is essential to do a careful calculation of the bound

WIMP distribution function at the position of the Earth. There are several reasons why

the Damour & Krauss (1999) calculation is incomplete. (i) They do not consider the effects

of rescattering in the Sun. This means that they likely overestimate the Kozai-cycling pop-

ulation. (ii) The translation between the identification of particles on Kozai cycles and the

distribution function is somewhat suspect. In both Damour & Krauss (1999) and Bergström

et al. (1999), the distribution function is estimated by assuming that the bound particles

only cross the Earth’s orbit (or rather, anywhere on the spherical shell with r = 1 AU) with

the eccentricity from the initial scatter. However, the Kozai cycles allow the orbital plane of

the particles to intersect the plane of the Earth’s orbit with different I and e than their orig-

inal values. Given that a is conserved in the secular approximation, the heliocentric speed

of the particles does not change, but the arrival directions may. If H is exactly conserved,

then the particle speed in the direction of the Earth’s motion is conserved, so changes in the

arrival direction will always be orthogonal to the Earth’s motion. Therefore, the geocentric

speed is independent of the Kozai-cycling particle arrival direction. However, Damour &

Krauss (1999) and Bergström et al. (1999) weight the distribution function by the time a

particle spends between r and r + dr. The time a particle spends in that annulus depends

on the particle direction with respect to the radial. If a particle’s eccentricity is modulated

by the Kozai cycles, then the orbit of the particle may be significantly non-radial when it

intersects the Earth’s orbit, which increases the time the particle spends in the annulus

between r and r + dr. Another consequence of the change in arrival direction is relevant
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for those particles with a→ 2.6a⊕. For particles with relatively large semi-major axis, the

approximation that H is conserved is no longer very good. Therefore, the geocentric speed

distribution will be smeared. If the speeds get smeared to lower values, then the indirect

detection rate will increase for more massive particles.

There are a few more questions about bound particles. First, how will the presence of

resonances affect the Kozai cycles? In addition, how important are Jupiter-crossing parti-

cles? Particles that approach Jupiter can experience large changes to their orbital elements,

and can reach parts of the geocentric phase space that are simply not accessible by particles

with small semi-major axis. Thirdly, how important are the bound particles that have small

semi-major axes but are not on Kozai cycles? This is important because far more particles

scatter in the volume r < 0.5R� than outside that radius. One would also like to exam-

ine how the resulting distribution function depends on the particle physics model for dark

matter. In particular, it is important to determine if the bound dark matter distribution

function depends on the mass, strength or type of the WIMP-nucleon cross section.

The only way to really understand this problem is to simulate large numbers of orbits

in the solar system. The Damour & Krauss (1999) and Bergström et al. (1999) results

are intriguing, enough so that a more thorough examination of WIMPs bound to the solar

system by weak scattering in the Sun is necessary.

1.4.2 Gravitational Scattering

The original work on gravitational capture in the solar system was done by Gould (1991). In

this paper, Gould observed that, when a particle undergoes a close gravitational scatter with

a planet, its speed relative to the planet does not change as a result of its interaction, but its

angle with respect to the direction of motion of the planet does. Transforming back to the

heliocentric frame, this means that the particle’s speed does change. The interaction with

the planet can bind or unbind the particle with respect to the Sun. Gould estimated that

Jupiter could rapidly “diffuse” unbound particle orbits to bound orbits, reaching equilib-

rium after only a few million years by altering the planet-centric directions of the particles.
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He then stated that the other planets in the solar system, but Venus and Earth in particular,

could then “diffuse” those bound orbits into other regions of the velocity phase space. He

concluded that the resulting geocentric velocity distribution of dark matter particles would

not be noticeably different from the velocity distribution in free space. In other words, if

fs(v∞) is the distribution function of particles with velocity v∞ with respect to the Sun but

outside its sphere of influence, and v is the speed of a particle with respect to the Earth and

at the position of the Earth within the Sun’s gravitational potential, then the distribution

function at the Earth f⊕(v) = fs(v).

However, Gould’s argument was based on rough estimations of timescales and ignored

any type of scattering in the Sun. Lundberg & Edsjö (2004) attempted to do a more

careful calculation of the geocentric phase space density of dark matter particles. Instead

of simulating particle orbits, they solved differential equations for the number density of

particles in velocity space. They used estimates of the scattering probability with planets

based on Gould (1988) and Gould (1991). In order to take into account scattering in the

Sun, they solved the differential equations for the dark matter distribution function two

different ways. In the first approach, they treated the Sun as a point mass and ignored all

WIMP-nucleon scatters. In the second approach, they ran simulations of 2000 orbits in the

solar system, and estimated the survival time of the particles as a function of geocentric

velocity. However, an integration was stopped if the particle entered the Sun; this is the

approximation that the Sun has infinite optical depth for WIMPs. In solving the differential

equations for the density of particles at the Earth, orbits were removed with a frequency

ν(u) = 1/tsurv(u), where u is the geocentric velocity. In both the cases of the point-mass

Sun and the infinite optical depth Sun, the only planets included in the differential equation

solutions are Jupiter, Earth, and Venus. These planets are assumed to be on circular orbits

about the Sun.

Lundberg & Edsjö (2004) state that they have confirmed Gould’s claim that the geocen-

tric velocity distribution looks like the free space distribution function if the Sun is a point

mass, and that the distribution function reaches equilibrium in about 500 Myr. There is
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actually a very low velocity cutoff in the distribution function at u = 2.5 km s−1, which

is the lowest speed to which Venus can scatter particles. If the calculation had included

Mercury or the eccentricities of the planets, the cutoff speed would have been lower. Lund-

berg & Edsjö find that the distribution function in the optically thick Sun calculation is

highly suppressed with respect to that of the point mass Sun solution (see their Figure

14). Therefore, the neutrino-induced muons from WIMP annihilation in the Earth will not

be observable by the next generation of km3-scale experiments. This conclusion from the

infinite optical depth Sun calculation is widely cited in particle astrophysics literature.

There are several shortcomings with this approach and the interpretation of implications

for neutrino telescopes. (i) The calculations ignore any and all mean motion resonances or

secular effects that may occur in the solar system. (ii) Since Lundberg & Edsjö (2004)

assume that perihelion precession is much faster than, for example, the rate of change of

the inclination of the orbit, Kozai cycles cannot be modeled. As noted in the discussion of

WIMPs captured in the Sun through weak interactions, particles on Kozai cycles can have

a potentially large effect on the dark matter distribution function. (iii) Lundberg & Edsjö

(2004) model the Sun as either having an optical depth of zero or an infinite optical depth.

In reality, the optical depth of the Sun to WIMPs will depend on the strength and type

of the WIMP-nucleon cross section. In fact, it may even be possible to distinguish among

particle physics models based on the low-velocity distribution function. Therefore, it would

be quite nice to be able to predict the distribution function as a function of WIMP mass

and cross section.

As in the case of WIMPs captured in the Sun, in order to make robust predictions of

the bound WIMP velocity distribution, it is necessary to simulate orbits in the solar system

with an appropriate treatment of scattering in the Sun.

1.5 This Approach

The approach of this thesis is to estimate the bound dark matter distribution function

resulting from both gravitational and weak scattering by numerically tracing particle orbits
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in the solar system, including a proper treatment of scattering in the Sun. Only by tracing

the orbits of a statistically significant number of particles can one evaluate all the effects

that may determine the bound WIMP population. The major reason why such a numerical

approach has not yet been attempted is because the large samples of orbits need to be

integrated for very long times to get an accurate statistical description of the distribution

function. Moreover, typical orbits of bound WIMPs are challenging to follow numerically.

For example, WIMPs scattered in the Sun initially have eccentricities e > 0.995. However,

most integrators start to fail unless one goes to tiny time steps for e > 0.9. Also, it is

necessary to integrate particle orbits through strongly non-Keplerian potentials. Finally,

the numerical integrations must have no numerical dissipation over the lifetime of the solar

system. A large percentage of the work in this thesis was devoted to developing fast methods

to integrate particle orbits.

I focus on estimates of the bound dark matter population in a solar system that includes

only the Sun and Jupiter (which is placed on a circular orbit). This simplification speeds

up the calculations and makes them easier to interpret. Moreover, one advantage of this

circular three-body problem is that there is a constant of motion, the Jacobi constant. This

allows for an easy check on the code stability. For the simulations in this thesis, I also

neglect weak scatters in Jupiter and treat it as having constant mass density.

Using this simplified model of the solar system, I estimate the bound dark matter

distribution function, running separate simulations to evaluate the weak and gravitational

components. In Chapter 2, I outline the particle physics model used for the simulations, as

well as the WIMP masses and cross sections used. Fiducial models for the halo distribution

function and other astrophysical quantities will be presented. I also discuss the choice

for the initial conditions for the simulations, including arguments for the choice of those

conditions. In Chapter 3, I will describe the integrator used for the orbit simulations. Even

though the simulations are performed with only one planet, the integrator can be applied

to multi-planet systems. Chapter 4 outlines how I turn the output of the simulations into

distribution functions. Chapter 5 is the heart of the paper. In that chapter, I discuss the
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results and the interpretation of the distribution functions. I also calculate the impact of

bound dark matter particles on direct and indirect detection rates. Finally, in Chapter 6, I

summarize the results of this thesis and conclude with some thoughts on future work.



Chapter 2

Initial Conditions

In this chapter, I will discuss the initial conditions for the simulations. First, I will dis-

cuss the choices of dark matter properties, as well as choices for astrophysical parameters.

Secondly, I will describe how I select starting positions and velocities for the dark matter

particles for both the weak and gravitational capture simulations.

2.1 Particle and Astrophysics Input

2.1.1 The Dark Matter Candidate

In order to perform the orbit simulations, it is necessary to specify some dark matter

properties. The particle mass and elastic scattering cross sections completely determine

scattering properties in the Sun, and hence, these are the only WIMP-dependent parameters

necessary to run the simulations and find the WIMP distribution function at the Earth.

Since different particle physics models can yield the same masses and elastic scattering cross

sections, and different parts of parameter space within each particle physics model map to

the same WIMP masses and elastic scattering cross sections, the particle physics model

and parameter space within each model do not need to be specified for the simulations.

In contrast, a specific particle physics model is needed to determine the neutrino-induced

muon signal from capture and annihilation of WIMPs in the Earth, since the decay modes

74
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and branching ratios are model-dependent. The masses and cross sections used in the

simulations below are typical of supersymmetric models, but not UED models, since the

latter models give much smaller event rates.

The goals of my simulations are to predict the direct and indirect detection signals

from particles bound to the solar system (relative to the signal from unbound particles),

to determine how such signals depend on WIMP mass and cross section, and to find the

maximum signals consistent with current experimental constraints on WIMP properties.

These goals constrain my choices for both the WIMP mass and the absolute and relative

strengths of the elastic spin-independent and spin-dependent cross sections. I would like

to consider WIMPs that have mWIMP . 1 TeV such that it is kinematically possible to

scatter significant numbers of halo WIMPs onto bound Earth-crossing orbits via elastic

scattering in the Sun. If the WIMP mass is much higher than 1 TeV, scattering onto bound

orbits is significantly suppressed because of momentum and energy conservation (this will

be demonstrated in the discussion about Eq. 2.33 in Section 2.2).

The relative strengths of the spin-dependent and spin-independent elastic scattering

cross sections are important in the context of scattering in both the Sun and the Earth.

For simplicity in interpreting the simulations, I would like to use either a spin-independent

or spin-dependent cross section, but not a mixture of the two. I choose to focus on the

spin-independent cross section for the simulations for the following reasons. First, for nuclei

with even numbers of protons and neutrons, the spin of the nucleus is zero, and so the spin-

dependent interactions are identically zero. Of the most common elements in the Sun, only

hydrogen and nitrogen have non-zero spin, so only those elements can have a spin-dependent

interaction. However, scattering on hydrogen is kinematically suppressed for even modest

WIMP masses (mWIMP & 100 GeV). In addition, if the spin-independent and -dependent

WIMP-proton cross sections are equal, the spin-independent cross section will yield a much

larger opacity in the Sun since the Sun contains heavy elements and the spin-independent

cross section is a steeply increasing function of atomic number (see Appendix B). Therefore,

unless the spin-dependent elastic scattering cross section is far larger (by a factor of & 100
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for hydrogen, although this depends on the WIMP mass) than the spin-dependent cross

section, spin-independent interactions will dominate the scattering of WIMPs from the

halo onto orbits bound to the Sun.

Secondly, in the case of capture in the Earth, spin-independent interactions will dominate

unless the spin-dependent cross section is many, many orders of magnitude larger than the

spin-independent interactions. This is due to the fact that the Earth largely consists of iron,

which has even numbers of both neutrons and protons. There are only trace amounts of

elements with unpaired protons or neutrons in the Earth. Therefore, in the simulations in

this thesis, I focus exclusively on spin-independent interactions between WIMPs and nuclei,

effectively setting σSD
p = 0.

However, with current constraints on the elastic scattering cross sections, it is possible

that the spin-dependent interactions would dominate in the Sun. In the MSSM, there are

regions of parameter space for which σSI
p � σSD

p , as well as regions for which σSI
p � σSD

p .

Rather than carrying out a separate set of simulations for spin-dependent interactions,

in Chapter 5 I scale the results from the spin-independent simulations to estimate the

approximate distribution functions for the case of high spin-dependent cross sections.

At the time I started the simulations, the most recent constraints on the spin-independ-

ent cross section came from the CDMS collaboration (Akerib et al., 2006b), and so these

constraints guided my choice of mWIMP and σSI
p for the simulations. In the case of weak

capture by the Sun, I wanted to explore the dependence of the bound distribution function

on both mass and cross section. While the interest in the cross section is fairly obvious,

the mass dependence is also important for at least three reasons: (i) Particles of different

masses will have slightly different distributions following their first scatter in the Sun, with

heavier particles tending to scatter onto more loosely bound orbits. (ii) The opacity in the

Sun is a (weak) function of particle mass. (iii) Heavier particles will tend to require more

scatters by the Sun before their orbits decay into the Sun, thereby extending the lifetime

of Earth-crossing orbits of heavy WIMPs.

I chose to run four simulations with different choices of mWIMP and σSI
p . The first
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simulation, called “DAMA”, usedmWIMP = 60 atomic mass units (AMUs) and σSI
p = 10−41

cm2. These parameters lie in the DAMA annual modulation region (Belli et al., 2000;

Bernabei et al., 2000b). A second simulation, called “CDMS”, used the same WIMP mass

as in the DAMA simulation but a cross section two orders of magnitude lower, σSI
p =

10−43 cm2, below the minimum of the CDMS exclusion curve (see Figure 2.1). Two more

simulations were chosen to have σSI
p = 10−43 cm2 but with larger WIMP masses. The

“Medium Mass” simulation uses mWIMP = 150 AMU, and the “Large Mass” simulation

uses mWIMP = 500 AMU. The mass for the Medium Mass simulation was chosen so that

its corresponding maximum speed for capture in the Earth lies just at the upper edge of

the Kozai-cycle distribution function of Bergström et al. (1999, 2001, see also Figure 1.16).

The Large Mass WIMP mass was selected to explore the dependence of the simulations on

WIMP mass. The choices for mWIMP and σSI
p are plotted in Figure 2.1 in addition to some

recent direct detection results. The details on the initial conditions of the simulations are

summarized in Table 2.1.

For the gravitational capture simulations, I used only one point in the mWIMP − σSI
p

plane, mWIMP = 500 AMU and σSI
p = 10−43 cm2, the same as in the Large Mass simulation.

I only chose one point because for most plausible masses and cross sections, the distribution

function of gravitationally captured particles is dominated by particles that either never

entered the Sun or did so fairly infrequently, so the flux at the Earth would likely be

almost independent of the mass and cross section. To check this assumption, I kept track

of the total optical depth experienced by each particle on its trajectory and confirmed,

once the simulation was over, that the WIMP-proton coupling had only a small effect on

the distribution function of bound particles. The details on the initial conditions of the

simulations are summarized in Table 2.2.

The spin-independent cross sections in these simulations arise naturally in large swaths

of the MSSM parameter space. The spin-dependent and spin-independent cross sections in

the simplest UED model are predicted to be much smaller than those I consider here, and,

in particular, are too small for there to be appreciable capture in the Earth, even for dark
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Figure 2.1: Points in the σSI
p −mχ parameter space used for the weak scattering simulations,

plotted along with exclusion curves from recent experiments. This plot was generated with
the help of an interface available at:
http://dendera.berkeley.edu/plotter/entryform.html .
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matter distribution functions as large as those predicted by Damour & Krauss (1999)–and

I will demonstrate in Chapter 5 that the actual distribution functions of bound WIMPs

are far smaller. Therefore, when I predict event rates in neutrino telescopes, I shall assume

that the dark matter particle is the lightest supersymmetric particle (LSP) in the MSSM.

For much of the MSSM parameter space, and for models that do not over-predict Ωm, the

LSP is the neutralino χ, the lowest mass eigenstate of the supersymmetric partners of the

B, W3, and Higgs bosons (see Jungman et al., 1996, and Chung et al., 2005, for reviews

of the MSSM). The neutralino can take on a wide range of masses. Since the neutralino is

a Majorana particle, it can have both spin-dependent (axial-vector) and spin-independent

(scalar) elastic scattering interactions with baryonic matter.

For the rest of this thesis, I shall assume that the dark matter particle is a neutralino,

even though, as previously stated, most of the results are independent of the nature of the

dark matter particle. Thus, I will use mχ instead of mWIMP to denote the WIMP mass,

and, in general, use χ subscripts instead of WIMP subscripts to indicate dark matter-related

parameters.

To summarize, I run four sets of simulations of the evolution of dark matter particles

captured from the halo by elastic scattering in the Sun, with various WIMP (neutralino)

masses and spin-independent cross sections, setting the spin-dependent cross section to

zero. I run one set of simulations of the evolution of dark matter particles captured by

gravitational scattering by Jupiter, with the WIMP mass and cross section set to mχ = 500

AMU and σSI
p = 10−43 cm2. Even though I do not need to specify a dark matter model

to run the simulations, supersymmetry provides the most natural particle physics model

for which the simulations are relevant. Therefore, I employ the MSSM when predicting

neutrino-induced muon event rates in neutrino telescopes. Descriptions of the forms of the

elastic scattering cross sections appear in Appendix B.
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2.1.2 The Halo Distribution Function

I adopt the Maxwellian distribution function

fhalo(x,v) =
nχ

(2πσ2)
e−v

2/2σ2
(2.1)

to describe the dark matter distribution function in the solar neighborhood in the frame

of the halo and far outside the gravitational sphere of influence of the Sun. Here, σ is the

one-dimensional dark matter velocity dispersion, set to σ = v�/
√

2 (see Appendix A for

explanation), and I set the speed of the Sun around the Galactic center to be v� = 220

km/s. I do not include solar motion. The observational uncertainty in v� is about 10%. The

WIMP number density is nχ = ρχ/mχ. I assume that the dark matter density is smooth

and time-independent in the neighborhood of the Sun, and that ρχ = 0.3 GeV cm−3. Even

if the dark matter were somewhat lumpy, my results will still be valid if ρχ is interpreted as

the average density in the solar neighborhood (Kamionkowski & Koushiappas, 2008), since

I am interested in the long-term build-up of bound dark matter in the solar system.

I next translate the halo distribution function to an inertial frame moving with the Sun.

Transforming to the heliocentric frame via a velocity transformation vs = v − v�,

fs(x,vs)d
3xd3vs = fhalo(x,vs + v�)d3xd3vs (2.2)

=
nχ

(2πσ2)3/2
e−(vs+v�)2/2σ2

d3xd3vs. (2.3)

This distribution is anisotropic in the frame of the Sun, and anisotropic with respect to

the plane of the solar system (the ecliptic). The direction of the anisotropy with respect to

the ecliptic depends on the phase of the Sun’s orbit about the Galactic center. In order to

avoid choosing a specific direction for the anisotropy (in other words, to avoid choosing to

start our simulations at a particular phase of the Sun’s motion about the Galactic center),

I angle-average this anisotropic distribution function to obtain an isotropic distribution
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function of the form

f̄s(x, vs) =
1

4π

∫
fs(x,vs)dΩ (2.4)

=
1

2

∫ 1

−1

nχ

(2πσ2)3/2
e−(v2

s+2vsv� cos θ+v2
�

)/2σ2
d(cos θ) (2.5)

=
1

2(2π)3/2

nχ

σv�vs

[
e−(vs−v�)2/2σ2 − e−(vs+v�)2/2σ2

]
. (2.6)

Using the angle-averaged distribution function is approximately valid for two reasons: (i)

Scattering in the Sun is isotropic, so any bound WIMPs produced by elastic scattering will

initially be isotropically distributed. (ii) The time-averaged distribution function (averaged

over the Sun’s ≈ 200 Myr orbit about the Galactic center) only has a small anisotropic

component (Gould, 1988), a consequence of the large (60o) inclination of the ecliptic pole

with respect to the rotation axis of the Galaxy, and if the flux at the Earth is dominated by

particles whose lifetime in the solar system is greater than the period of the Sun’s motion

about the Galactic center, the use of time-averaged distribution function is appropriate. I

will discuss the lifetime distributions in depth in Chapter 5. This second argument holds

whether the bound WIMPs are produced by gravitational capture or elastic scattering, but

only if the WIMPs that dominate the distribution functions are long-lived (& 108 yr).

I now determine how the Sun’s gravity modifies the distribution function by using Li-

ouville’s theorem. Liouville’s theorem states that in conservative systems, the phase space

density does not change along a path. If I neglect the gravitational potential of the plan-

ets and the extremely rare interactions between dark matter particles, then each particle’s

energy E is conserved:

E =
1

2
v2
s (2.7)

=
1

2
v2 + Φ�(r), (2.8)

where v is the speed of particle with respect to and in the gravitational sphere of influence

of the Sun, and Φ�(r) is the gravitational potential of the Sun (Φ� = −GM�/r for r > R�,

where R� represents the surface of the Sun). Thus, the distribution function within the
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Sun’s potential well is

f(r, v) = f̄s(r, vs(r, v)), (2.9)

vs(r, v) =
√

2Φ�(r) + v2. (2.10)

An important consequence of this result is that the distribution function is identically zero

for local velocities v <
√

−2Φ�(r) = vesc(r) below the escape velocity at that radius.

2.1.3 The Sun

The Sun is modeled as spherical and non-rotating. The gravitational potential and chemical

composition are described by the BS(OP) solar model (Bahcall et al., 2005). I include the

elements 1H, 4He, 12C, 14Ni, 16O, 20Ne, 24Mg, 28Si, and 56Fe in computing the elastic

scattering rate.

2.1.4 The Solar System

The solar system is modeled as having only one planet, Jupiter, since Jupiter has the largest

mass of any planet by a factor of 3.3 and therefore dominates gravitational scattering. I

place Jupiter on a circular orbit about the Sun, with a semi-major axis aJ = 5.203 AU, its

current value, for the entire simulation, since its eccentricity is only e ≈ 0.05 (Murray &

Dermott, 2000), and the fractional variation in its semi-major axis is . 10−9 over the lifetime

of the solar system (Ito & Tanikawa, 2002). Jupiter is modeled as having constant mass

density to simplify calculations of particle trajectories. This is not a realistic representation

of Jupiter’s actual mass density but only a small fraction of particles scattered by Jupiter

actually penetrate the planet. WIMP-baryon interactions in Jupiter are neglected since the

optical depth of Jupiter is small enough that the probability of even one scatter occurring

in each simulation is significantly less than unity.

The orbit of Jupiter defines the reference plane for the simulation. The Earth’s orbit is

assumed to be coplanar with the reference plane, since the actual relative inclination of the

two orbits is currently only 1.3◦.
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2.2 Weak Scattering in the Sun

The goal of this section is to compute the rate of elastic scattering of halo WIMPs by

baryons in the Sun onto bound orbits, as a function of the energy and angular momentum

of particles after the scatter. There are two natural approaches to this problem: (i) Sample

the dark matter flux through a shell a distance R < R� from the center of the Sun, treating

scatter in the Sun probabilistically, and keeping only those particles which scatter onto

Earth-crossing bound orbits. (ii) Calculate the scattering probability in the Sun directly.

The second approach is more efficient, and this is the one described below.

The dark matter distribution function f evolves in accordance with the Boltzmann

equation, which has the form

Df

Dt
=

∑

A

Γ[f, fA] (2.11)

= Γtot[f ], (2.12)

where D/Dt is the Lagrangian derivative in phase space, and Γ[f, fA] is the collision term

for interactions involving dark matter and a nuclear species A in the Sun with a distribution

function fA(xA,vA). In the case of elastic scattering of a dark matter particle on a nucleus

A, the collision term has the form

Γ[f, fA] =

∫
d3vAdΩgA

dσA

dΩ

[
f(x′,v′)fA(xA,v

′

A) − f(x,v)fA(xA,vA)
]
, (2.13)

where the WIMP has an initial velocity v, the nucleus A has an initial velocity vA such that

the magnitude of the relative speed gA = |v − vA|, the final velocities of the dark matter

particle and the nucleus are v′ and v′

A respectively, and dσA/dΩ is the differential cross

section, having the form of Eq. (B.7). The derivation of this collision term can be found in

any statistical mechanics text (cf. Liboff, 2003), so I will focus on the meaning of the terms

in Eq. (2.13) instead of its derivation. I start with the second term in Eq. (2.13), the one

∝ f(x,v)fA(x,vA). This describes the scattering of dark matter particles out of the phase

space patch centered on (x,v), hence the minus sign in front of the term. The integral over

vA signifies that I consider scattering from all species A particles. The outgoing velocities
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are specified by energy and momentum conservation and by the center-of-mass scattering

angle Ω. The integral over Ω accounts for all possible center-of-mass scattering angles.

Therefore, this term describes the scattering of dark matter particles out of the volume

(x,v;x + dx,v + dv) by all possible interactions with particles of species A. The first term

in Eq. (2.13) describes the inverse reaction, the rate of scatter of dark matter particles into

the phase space volume centered on (x,v). I can take the integrals over vA and Ω instead

of v′

A and Ω′ due to conservation of phase space volume in elastic interactions.

The kinetic energy of nuclei in the Sun is much less than the kinetic energy of dark

matter particles. At the center of the Sun, the temperature is Tc ∼ 107 K, so the average

kinetic energy of a nucleus is of order

KEA = 3
2kTc (2.14)

∼ 1 keV. (2.15)

In the cooler outer layers of the Sun, the nuclei have even less kinetic energy. In contrast,

the kinetic energy of dark matter particles in the Sun is of order

KEχ ∼ mχv
2
esc (2.16)

∼ 103
( mχ

100 GeV

)
keV. (2.17)

The scattering rate on hydrogen to bound orbits is unimportant in the cases where the

WIMP-proton elastic scattering cross section is dominated by spin-independent interactions

because of the large mass imbalance between neutralinos and hydrogen, so in this case the

total scattering rate is dominated by the other, heavier species in the Sun. In Chapter

5, I will address the case in which the spin-dependent cross section dominates the total

scattering rate in the Sun, in which hydrogen dominates scattering in the Sun. The rms

velocity of the nuclear species A is 〈v2
A〉1/2 =

√
2KEA/mA ≈ 500(mA/GeV)−1/2 km s−1,

much lower than the ∼ 103 km/s speed of dark matter particles for nuclei heavier than

hydrogen. Therefore, to good approximation, one can treat the baryonic species in the Sun

as being at rest (i.e., having T = 0), so gA = v and

fA(x,vA) = nA(x)δ3(vA), (2.18)
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where nA(x) is the number density of species A. If I were simulating cases in which the

spin-dependent cross section were much higher than the spin-independent cross section, it

would be advisable to include the thermal velocity of the baryons in the Sun. Since I make

the approximation that the Sun is spherical, I can further simplify Eq. (2.18) by stating

that nA(x) = nA(r).

I can further simplify the collision term by restricting attention to scatters that place

WIMPs on bound orbits. Particles that scatter onto hyperbolic orbits only have a small

probability of intersecting the Earth as they stream through the solar system, while particles

that scatter onto bound orbits can intersect the Earth’s orbit many times before they are

annihilated in the Sun or ejected from the solar system. The consequence of restricting our

attention to bound particles is that the first term of Eq. (2.13), which describes particles

scattering into the phase space volume centered on (x,v), can be ignored. The reason this

term can be eliminated is that v′ corresponds to a bound orbit, but the halo distribution

function f(x′,v′) = 0 for bound orbits.

The constraint that the post-collision WIMP is bound can be expressed in terms of the

incoming speed and the center-of-mass scattering angle. The initial energy of a dark matter

particle is

E =
1

2
mχv

2 + Φ�(r) (2.19)

=
1

2
mχ

[
v2 − v2

esc(r)
]
, (2.20)

where I have expressed the gravitational potential in terms of the local escape velocity from

the Sun. The final energy of the dark matter particle is

E′ = E −Q (2.21)

=
1

2
mχ

[
v′2 − v2

esc(r)
]
, (2.22)

where Q is the energy transfer between the dark matter particle and the nucleus during the

collision. The energy transfer can be expressed in terms of the center-of-mass scattering

angle θ as (cf. Eq. B.5)

Q(v, cos θ) = 2
µ2

A

mA
v2

(
1 − cos θ

2

)
, (2.23)
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where

µA =
mAmχ

mA +mχ
(2.24)

is the reduced mass. The maximum energy transfer Qmax = 2µ2
Av

2/mA occurs if the dark

matter particle is back-scattered, i.e., θ = π. Since I am interested in particles that scatter

onto bound, Earth-crossing orbits,1 the interesting range of outgoing energy is

−GM�mχ

2(0.5a⊕)
≤ E′ ≤ 0, (2.25)

where a⊕ is the semi-major axis of the Earth’s orbit, with the lower bound determined by

the fact that the aphelion of a highly eccentric orbit is 2a.

For a given incoming energy E, it may not be kinematically possible to scatter into the

full range of bound, Earth-crossing orbits. In particular, if E − Qmax = E′

min > 0, the

particle cannot scatter onto a bound orbit at all. Therefore, the lower bound on allowed

outgoing energy is

E′

min = max

(
−GM�mχ

2(0.5a⊕)
,min(E −Qmax, 0)

)
, (2.26)

while the upper bound remains

E′

max = 0. (2.27)

This restriction on outgoing energy can be translated into a restriction on the center-of-mass

scattering angle for a given initial energy. Solving Eqs. (2.20), (2.21), and (2.23) for cos θ,

I find

(cos θ)min,max = 1 − mA

µA

1
2mχ(v2 − v2

esc) − E′
min,max

µAv2
. (2.28)

1In principle, particles scattered to bound orbits with a < a⊕/2 could later evolve onto Earth-crossing
orbits. However, the torque from Jupiter is never high enough to pull a particle with a < a⊕/2 onto an
Earth-crossing orbit unless ((a⊕/2)−a)/a . 10−3. The inner planets could make a particle with an initially
small energy migrate to Earth-crossing orbits if those planets were included in the simulation, but these
have such small mass that their gravitational scattering is very weak. Moreover, each additional scatter in
the Sun reduces the energy of the orbit in the limit of a cold Sun, so the semi-major axis may only shrink.
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Using this expression and Eq. (2.13), I can express the scattering rate of particles onto

bound, Earth-crossing orbits as

dṄ⊕

drdvdΩ
= (4π)2

∑

A

r2nA(r)v3 dσA

dΩ
f(r, v) (2.29)

×Θ(R� − r)Θ[cos θ − (cos θ)min]Θ[(cos θ)max − cos θ],

where I have imposed spherical symmetry on the Sun, f(x, v) is the distribution function

in Eq. (2.9), and Θ(x) is the step function. This is the distribution I sample to obtain the

energy and angular momentum distribution of the outgoing particles.

The energy distribution of scattered particles can be understood heuristically in the

following way. One can change variables from the center-of-mass angle to the outgoing

energy E′ in two steps using Eqs. (2.21) and (2.23),

dΩ = 2π
mA

µ2
Av

2
dQ (2.30)

dE′ = dQ. (2.31)

Therefore, the outgoing energy is distributed uniformly unless there is kinematic suppression

(see Eq. 2.29) in a particular energy range. The kinematic suppression is most pronounced

for large WIMP masses and very negative energies because, in order for a particle to scatter

onto a bound orbit,

vs ≤ 2

√
mχmA

mχ −mA
vesc(r) (2.32)

where vs is the particle velocity at infinity. If mχ � mA, then

vs ≤ 2

√
mA

mX
vesc(r), (2.33)

so heavy dark matter particles can only scatter onto bound orbits if their velocities at

infinity are only a small fraction of the escape velocity from the Sun a distance r from the

Sun.

For energies for which the kinematic suppression is minimal, I can express the uniformity

of dṄ⊕/dE
′ in terms of the semi-major axis. Since E′ = −GM�/2a for particles on elliptical
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orbits, dṄ⊕/da ∝ a−2, or

d log Ṅ⊕

d log a
= −1. (2.34)

Therefore, most particles scatter onto relatively small orbits; only half of the particles on

Earth-crossing orbits have a > 1 AU.

The angular momentum of each scattered particle is in the range J ∈ [0, rv′], where

r is the radius from the center of the Sun at which the particle scatters. To determine

the distribution of magnitudes and directions for the angular momentum, I assume that

the direction of the final velocity v′ is isotropically distributed with respect to the position

vector r. If I specify θv to be the colatitude of the velocity vector with respect to the

position vector, and the magnitude of the angular momentum is J = rv′ sin θv, then the

distribution in angular momentum at fixed r, v′ has the form

dṄ⊕ ∝ d cos θv =
dJ2

2r2v′2
√

1 − J2/(r2v′2)
. (2.35)

The effect of kinematic suppression due to a large WIMP mass is that the particles that do

scatter onto bound orbits can only do so close to the center of the Sun. This reduces the

maximum angular momentum of the outgoing particle, and so eccentricity is an increasing

function of WIMP mass.

2.3 Gravitational Scattering

The gravitational capture simulation consists of lobbing billions of dark matter particles

at the solar system and observing how many stick, and for how long. In deciding how to

arrange the initial conditions, it is useful to think about the flux of dark matter particles into

a sphere of radius R centered on the Sun. The flux for our isotropic distribution function

f is

F (R, v) = 4πv2f(vs(R, v)) ×
1

2
v cos θd cos θ (2.36)

= πv3f(vs(R, v))dvd(cos2 θ), (2.37)
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where π/2 < θ < π is the angle between the velocity v and the position vector R for

incoming particles, and vs is the speed of the particle relative to the Sun but far outside

its gravitational sphere of influence. Therefore, the total number of particles going inward

through this spherical shell per unit time is

Ṅ(R) = 4π2R2v3f(vs(R, v))dvd(cos2 θ). (2.38)

It is useful to express this rate in terms of the energy E and specific angular momentum J

(i.e., angular momentum per unit mass) instead of v and cos2 θ. Given that

E =
1

2
v2 + Φ�(R) (2.39)

J = Rv sin θ, (2.40)

I find (see also Press & Spergel, 1985)

Ṅ = πf
(√

2E
)

dEdJ2. (2.41)

Therefore, the number of particles going through any shell is independent of the radius of

the shell for a given energy and angular momentum; this is to be expected since there is no

loss mechanism between shells.

If I were to sample all particles that flow in towards the Sun, I would sample the energy

according to to f(
√

2E) and the angular momentum to be uniform in J2. However, by

restricting the range of incoming particles that are sampled to those that could be scattered

onto bound orbits, I can speed up the calculation.

To find the range of E (with respect to the Sun) for which particles might possibly be

gravitationally scattered by Jupiter onto bound orbits, it is useful to think of gravitational

capture in the following way. In the frame of the scattering planet, Jupiter, the particle

speed does not change during the encounter, but its direction with respect to the direction

of motion of Jupiter does. Therefore, if the particle has a velocity v with respect to the

Sun before encountering Jupiter, it will have an initial speed with respect to Jupiter of

u = v−vJ , where vJ is the velocity of Jupiter with respect to the Sun. After encountering

Jupiter, the particle will have a velocity u′ = Tu, where T is a rotation matrix. Therefore,
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the post-encounter velocity of the particle will be v′ = Tu′ + vJ . For particles that were

barely unbound to the solar system to begin with, it takes only a tiny deflection of the orbit

to bind it to the solar system. However, for particles with increasingly higher energy with

respect to the Sun, it takes an ever greater deflection by Jupiter to bind the particle.

In order to find an upper limit to the energy from which particles may be captured,

consider the most extreme encounter possible. This is the case of a particle that has a tiny

impact parameter with respect to Jupiter, and which has its initial velocity aligned with

Jupiter’s direction of motion. Therefore, the particle’s velocity with respect to Jupiter is

u = v − vJ , (2.42)

where v = |v|. The particle will be deflected through 180◦, so that

u′ = −(v − vJ) (2.43)

v′ = 2vJ − v. (2.44)

The requirement that the particle is bound to the solar system after the scatter is equivalent

to the statement

∣∣v′
∣∣ ≤

√
2vJ . (2.45)

Therefore,

2vJ ≤ v ≤ (2 +
√

2)vJ , (2.46)

or

(2 −
√

2)vJ ≤ v ≤ 2vJ , (2.47)

and so

Emax ≈ 1

2

(
2 +

√
2
)2
v2
J − GM�

aJ
(2.48)

= 2
(
1 +

√
2
)
v2
J . (2.49)
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This corresponds to a speed outside the gravitational sphere of influence of the Sun of

vs,max = 2
(
1 +

√
2
)1/2

vJ (2.50)

= 41 km/s. (2.51)

In other words, no WIMP with a velocity far from the Sun that exceeds 41 km s−1 with

respect to the Sun can be gravitationally captured.

I want to be able to check my simulation and analysis methods against something

analytic. I choose to probe the energy range for which particles cannot be bound to the

solar system (E > Emax) but may have geocentric speeds less than vgeo < (
√

2 + 1)v⊕,

the range that overlaps the geocentric speed range of bound particles. Also, by simulating

particles in that energy range, I will simulate all orbits with vgeo < (
√

2 + 1)v⊕. Even

though the speeds of bound and unbound WIMPs may overlap if v < (
√

2 + 1)v⊕, the

direction of the velocity with respect to the Earth depends on whether or not the particles

are bound. In principle, if an experiment had directional sensitivity and one were most

interested in the bound particles, it would not matter what the velocity distribution of halo

WIMPs is. However, knowing the full distribution of particle speeds below this limit is

important because most WIMP detectors (either direct or indirect) are insensitive to the

direction of the WIMPs (see, e.g., Green & Morgan, 2008, for a list of the few experiments

that do have directional sensitivity). The distribution function in the geocentric frame for

these higher energy particles can simply be found using Liouville’s theorem and appropriate

Galilean transformations of the halo distribution function for the relevant energy range. The

maximum speed an unbound particle can have with respect to the Sun and match vgeo in

the frame of the Earth is vmax = (
√

2 + 2)v⊕, which occurs when the Earth’s motion and

the particle’s motion are exactly aligned. Therefore, the maximum energy with respect to

the Sun is obtained using v = vmax − v⊕,

Eunbound
max =

1

2

(
2 +

√
2
)2
v2
⊕ − v2

⊕, (2.52)
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since GM�/a⊕ = v2
⊕, corresponding to a maximum speed outside the gravitational sphere

of influence of the Sun of

vs,max ≈ 93 km/s. (2.53)

In Chapter 5, I show that the distribution function of these particles derived from the simu-

lations is a match to the analytic distribution function, a nice verification of my simulation

and analysis techniques.

In addition to limiting the range of E that I sample, I can also speed up the calculation

by constraining the range of J2 sampled. This constraint is equivalent to specifying a range

of orbital perihelia to probe, given that the perihelion rp is defined by

E =
1

2
J2/r2p −GM�/rp (2.54)

such that the angular momentum for a given energy E and perihelion is described by

J2(E, rp) = 2rp (Erp +GM�) . (2.55)

The goal is to make the range of rp (and hence, J2) large enough to encompass all orbits

that might become bound to the solar system while keeping the range small enough so as

not to waste computing resources by following unnecessary orbits.

I divide the gravitational scattering simulation into three parts, each defined by a dif-

ferent range of energy and perihelion: the “Regular run”, the “High Perihelion” run, and

“High Energy run.” The Regular run samples particle orbits with:

0 ≤ E < v2
�/50 =

1

2
(44 km/s)2, rp < 10 AU. (2.56)

The upper end of the energy range is slightly larger than the value of Emax determined in

Eq. (2.49), while the maximum perihelion of 10 AU was chosen to be large enough–twice

the semi-major axis of Jupiter–so that this run would contain the vast majority of particles

that are gravitationally captured. If the Regular run misses any bound orbits due to the

limit on rp, those orbits should be found in the High Perihelion run, defined by

E < v2
�/50, 10 < rp < 20 AU. (2.57)
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The High Energy run samples particles with

v2
�/50 < E < v2

�/10 =
1

2
(98 km/s)2, rp < 10 AU. (2.58)

The upper end of the energy range is approximately that found in Eq. (2.52). These orbits

cannot be gravitationally captured by Jupiter, but I can check my analysis methods by

determining if the geocentric distribution function of these particles matches the analytic

prediction. Among the three simulation runs, the distribution function of WIMPs with

vgeo ≤ (
√

2 + 1)v� at the Earth should be completely sampled. I spend about 70% of the

total CPU time for the gravitational scattering simulations on the Regular run, 25% on the

High Perihelion run, and the remainder on the High Energy simulations.

If I were to sample E and J2 according to the distribution of particle energy and angular

momentum squared flowing in towards the Sun, Eq. (2.41), the sampling probability would

be:

g(E, J2) ∝





f(
√

2E), J2(E, rmin
p ) ≤ J2 < J2(E, rmax

p )

0, J2(Emin, r
min
p ) ≤ J2 < J2(E, rmin

p )

or J2(E, rmax
p ) ≤ J2 ≤ J2(Emax, r

max
p )

(2.59)

in the range Emin ≤ E < Emax and J2(Emin, r
min
p ) ≤ J2 < J2(Emax, r

max
p ), where rmax

p and

rmin
p are the maximum and minimum perihelia allowed in each run. These ranges describe

the maximum extent of E and J2 for any given run. This sampling probability is highest

in the high energy, high angular momentum part of the range considered. However, I want

to sample proportionally more low energy orbits in both the Regular and High Perihelion

runs, since these are most easily capturable. There are many sampling schemes one could

use, but I choose to sample

g(E) = f(
√

2E), (2.60)

in the range Emin ≤ E < Emax, and uniformly sample J2(E, rmin
p ) ≤ J2 < J2(E, rmax

p ).

The difference between the two schemes can also be described in a more pragmatic

way. To sample the flux according to Eq. (2.59), I would use the rejection method for
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sampling, described in Chapter 7 of Press et al. (1992) in a box with sides of length (Emax−

Emin) and (J2(Emax, r
max
p ) − J2(Emin, r

min
p ). In this scheme, I sample f(

√
2E) in the

designated energy range to find a trial energy coordinate, and uniformly sample J2 in the

range J2(Emin, r
min
p ) ≤ J2 < J2(Emax, r

max
p ). I then randomly choose a value between zero

and a point slightly above the maximum value of g(E, J2) in the box. If that value lies

below g(E, J2) using the trial values of E and J2, the trial values are kept; if not, the trial

values are rejected. For E → Emin, the range of angular momentum for which g(E, J2) is

non-zero is much smaller than the angular momentum range for E → Emax.

However, in the scheme of Eq. (2.60), I use the same sampling technique for E only.

Once E is selected, I choose J2 in the range J2(E, rmin
p ) ≤ J2 < J2(E, rmax

p ). In effect, I

oversample low energy orbits relative to Eq. (2.41) because there is no trial for J2. This

oversampling is a result of the fact that many low-energy trials in (2.59) are rejected due

to the trials in J2. In Section 4.1, I demonstrate how I account for the oversampling when

building the distribution functions from the simulations.

Once a sample particle’s orbital parameters E and J2 are selected, its initial position is

determined by randomly orienting the position vector to a point on a spherical shell with

fixed radius R relative to the Sun. The initial speed vector is chosen to be oriented inward,

with the angle θ relative to the position vector determined by J2. The speed v is fixed by

R and J2 since J = Rv sin θ. The azimuth of the velocity vector relative to the position

vector is also randomly chosen. Thus, the initial position and velocity of the particle are

completely determined.

2.4 Simulation Specifics

Since integrating the orbits of particles in the solar system is computationally expensive,

it is more important to integrate just enough orbits to determine the approximate size of

the bound distribution function relative to the unbound distribution, and to get a sense of

which effects matter the most, than it is to get extremely tiny error bars. This principle

guides my choices in the sizes of the ensembles of particles.
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Table 2.1: Weak Scattering Simulations

Name mχ [AMU] σSI
p [cm2] Np [a > 0.48 AU]

DAMA 60 10−41 1078586
CDMS 60 10−43 145223
Medium Mass 150 10−43 144145
Large Mass 500 10−43 148173

Table 2.2: Gravitational Scattering Simulations

Name Np

Regular 4.8212 × 109

High Perihelion 3.994 × 109

High Energy 7.998 × 109

NOTE: All simulations have mχ = 500 AMU, σSI
p = 10−43 cm2.

The number of particles simulated in each of the weak scattering simulations is given in

Table 2.1. Over a million particles scattered onto orbits with initial semi-major axes ainit >

0.48a⊕ are simulated in the DAMA run. I follow particles with semi-major axes slightly

below the Earth-crossing threshold so that if the semi-major axis increases modestly during

the simulation, the contribution to the Earth-crossing flux is included. Fewer particles were

simulated in the runs with lower cross section because the lifetimes were far longer than

in the DAMA run. In other words, it took fewer particles to achieve a similar level of

confidence on the distribution function.

The numbers of particles simulated in each gravitational scattering run are given in

Table 2.2. The Regular run was subdivided into 5000 runs of either 8× 105 or 106 particles

each, depending on which beowulf cluster the runs were simulated on (see Chapter 3 for

details on the computers). Three of the runs needed to be discarded due to file corruption,

which was an issue on one cluster at the time these experiments were performed. The High

Perihelion simulation consisted of 4000 runs of 106 particles each. Due to file corruption,

six runs were eliminated from the analysis. The High Energy simulation consisted of 8000

runs of 106 particles, only two of which had problems with file corruption.



Chapter 3

Numerical Methods

In this chapter, I discuss the numerical algorithms relevant to the particle orbit simulations.

In Section 3.1, I describe the orbit integration algorithm. In Section 3.2, I demonstrate how

I treat scattering in the Sun. Finally, in Section 3.3, I describe all simulation-specific

details, including descriptions of the computers and CPU time used, stopping conditions

for individual orbit integrations, and the parameters used in the simulations.

3.1 The Integrator

The problem of determining the long-term trajectories of bound dark matter particles im-

poses a set of difficult challenges to the integration algorithm. The algorithm must:

• be stable and accurate over 4.5 Gyr.

• accurately follow highly eccentric (e > 0.995) orbits with no numerical dissipation.

• accurately integrate trajectories that are influenced by perturbing forces that may

be comparable to the force from the Sun for short intervals. This includes close

encounters with and passages through the planets.

• be fast, since one needs to integrate a large number of orbits to obtain an adequate

statistical sample.

96
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Much progress has been made in the past fifteen years to address the first and last cri-

teria. This progress has largely been motivated by interest in the long-term stability of

planetary systems. The most significant development has been the advent of geometric

integrators (symplectic and/or time-reversible integrators), which have the desirable prop-

erty that errors in conserved quantities (such as the Hamiltonian) are oscillatory rather than

growing. However, the most commonly used algorithms (Wisdom & Holman, 1991; Saha &

Tremaine, 1994; Chambers, 1999) are not immediately applicable to the present problem,

for two main reasons. First, one would like to use an adaptive time step to quickly but

accurately integrate a highly eccentric orbit (using very small time steps near perihelion

and larger ones otherwise), or to resolve close encounters with the planets. It is difficult

to introduce an adaptive time step in a symplectic or time-reversible way since varying the

time step by criteria that depend on phase-space position destroys symplecticity. Secondly,

since for practical purposes the integrations of planetary or comet orbits end when two

bodies collide, there has been little attention to integrating systems for which the potential

can deviate significantly from the Keplerian point-mass potential, as it does in the solar

interior.

In the following sections, I will describe an algorithm to efficiently carry out the long-

term integration of dark matter particles in the solar system. In Section 3.1.1, I will dis-

cuss an adaptive time step symplectic integrator (simultaneously formulated by Preto &

Tremaine, 1999, and Mikkola & Tanikawa, 1999) that is used for most of the orbital in-

tegrations. In Section 3.1.2, I describe the error properties of this integrator. In Section

3.1.3, I will discuss procedures to handle special cases, such as close planetary encounters.

I discuss the merits of various coordinate systems in Section 3.1.4. After the discussion of

rescattering in the Sun in Section 3.2, I will summarize the algorithm in Section 3.3.

3.1.1 The Adaptive Time Step Symplectic Integrator

One approach to designing a symplectic integrator with an adaptive time step is to find a

Hamiltonian that is separable in a set of canonical coordinates, but which incorporates a
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transformed time coordinate. I will closely follow the arguments of Mikkola & Tanikawa

(1999) and Preto & Tremaine (1999) in the description of the adaptive time step symplectic

integrator, which is an example of such an approach. Let me start with a separable Hamil-

tonian H(q,p, t) = T (p) + U(q, t), a function of the canonical position q and momentum

p, such that the Hamiltonian equations of motion are:

q̇ =
∂H

∂p
(3.1)

ṗ = −∂H
∂q

. (3.2)

Typically, T is the kinetic energy and U is the potential energy. I would like to transform

from t to a new time coordinate s using the rule

dt = g(q,p, t)ds. (3.3)

In order to construct a new, separable Hamiltonian (called Γ in both papers) for the system,

which incorporates the new time coordinate s, it is necessary to extend the phase space,

assigning q0 = t and p0 = −E, where E is the total energy, and defining a new set of

canonical variables Q = (q0,q) and P = (p0,p). This new Hamiltonian is written as:

Γ(Q,P) = g(Q,P) [H(q,p, t) − p0] , (3.4)

which one can see is the appropriate Hamiltonian for the time-transformation of Eq. (3.3)

by examining the time-transformed equations for the system:

dq0
ds

=
∂Γ

∂p0
= g(q,p, t) (3.5)

dq

ds
=
∂Γ

∂p
= g(q,p, t)

∂H

∂p
+
∂g(q,p, q0)

∂p
[H(q,p, q0) + p0] (3.6)

= g(q,p, t)
∂H

∂p

dp0

ds
= − ∂Γ

∂q0
= −g(q,p, t)∂H(q,p, t)

∂q0
− ∂g(q,p, q0)

∂q0

[H(q,p, q0) + p0] (3.7)

= −g(q,p, t)∂H(q,p, t)

∂q0
(3.8)

dp

ds
= −∂Γ

∂q
= −g(q,p, t)∂H

∂q
− ∂g(q,p, q0)

∂q
[H(q,p, q0) + p0] (3.9)

= −g(q,p, t)∂H
∂q

.
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The reason for dropping the second terms in the last columns is that H + p0 = 0 along

the path. Therefore, the equations of motion for the Hamiltonian Γ are simply the time-

transformed equations of motion for the original Hamiltonian H.

The extended Hamiltonian Γ can be made separable with the choice

g(Q,P) =
f(T (p) + p0) − f(−U(Q))

T (p) + U(Q) + p0
, (3.10)

so that the extended Hamiltonian reads

Γ(Q,P) = f(T (p) + p0) − f(−U(Q)), (3.11)

which is indeed separable. The equations of motion for this Hamiltonian are:

dq0
ds

= f ′(T (p) + p0) (3.12)

dq

ds
= f ′(T (p) + p0)

∂T

∂p
(3.13)

dp0

ds
= −f ′(−U(Q)

∂U(Q)

∂q0
(3.14)

dp

ds
= −f ′(−U(Q)

∂U(Q)

∂q
. (3.15)

Next comes the question of what choice of f(x) to use. Preto & Tremaine expand Eq.

(3.10) in a Taylor series to show that

g(Q,P) ≈ f ′(−U(Q)). (3.16)

If I consider a potential of the form

U(q, t) = − GM�

|q− q�|
+

∑

i

Φi(q,qi), (3.17)

where the first term in the potential denotes the Keplerian potential of the Sun and Φi is

the potential from planet i, one sees that for most of the particle orbit, the potential from

the Sun dominates. Preto & Tremaine show that for a choice of

g(Q,P) = |q − q�| (3.18)

≈ − GM�

U(q, t)
(3.19)
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the two-body problem can be solved exactly, with only a time (phase) error δt/P ∝ N−2,

where P is the orbital period and N is the number of steps per orbit. This is a good

feature because phase errors are far less important for my purposes than, for example,

systematic energy drifts or numerical precession. Note that the time step is proportional to

the particle’s separation from the Sun, so that I have small time steps near the perihelion

of the orbit and large steps near the aphelion. I use Eq. (3.18) as my choice for g(Q,P),

for which the functional form of f(x) is

f(x) = GM� log(x). (3.20)

The adaptive time step equations of motion are implemented via a second-order leapfrog

integrator (also called a Verlet integrator) with ∆s ' ∆t/g = h, where h is determined by

the number of steps desired per orbit. For my choice of f(x), and given T = v2/2 and

U = U(r, t), the change over a single fictitious time step h can be written as the mapping

r1/2 = r0 +
1

2
h
GM�v0

1
2v

2
0 + p0,0

(3.21)

t1/2 = t0 +
1

2
h

GM�

1
2v

2
0 + p0,0

(3.22)

v1 = v0 + h
GM�

U(r1/2, t1/2)

∂U(r1/2, t1/2)

∂r
(3.23)

p0,1 = p0,0 + h
GM�

U(r1/2, t1/2)

∂U(r1/2, t1/2)

∂t
(3.24)

r1 = r1/2 +
1

2
h
GM�v1

1
2v

2
1 + p0,1

(3.25)

t1 = t1/2 +
1

2
h

GM�

1
2v

2
1 + p0,1

. (3.26)

Since my goal is to understand the behavior of a large ensemble of orbits, I am more

interested in maintaining small energy errors over very long times rather than precisely

integrating orbits over short times. Therefore, a second-order symplectic integrator, such

as the one embodied in (3.21)–(3.26), is sufficient for my purposes. Higher-order symplectic

integrators are described in Yoshida (1990) and Forest et al. (1991).
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3.1.2 Errors Along the Orbital Path

In this section, I explore the behavior of the energy errors in the adaptive time step inte-

grator as a function of energy, eccentricity, distance from the Sun, and number of steps per

orbit. This study allows me, in conjunction with the results of Section 3.1.3, to determine

what fictitious time step h to use, given certain accuracy requirements. For this study, I

restrict myself to short integrations in order to focus on the errors of the adaptive time

step integrator alone. I will discuss the long-term behavior of the integrator in subsequent

sections.

To illustrate the typical behavior of WIMP orbits in planetary systems, I restrict the

number of planets in the solar system to just one: Jupiter. I put Jupiter in a circular orbit

about the Sun, and integrate the particle’s path in the heliocentric frame. In this case (the

restricted three-body problem), there is one constant of motion, the Jacobi constant

CJ = −2(E − nJJz), (3.27)

where E is the particle energy in an inertial frame, nJ is the mean motion of Jupiter, and Jz

is the z-component of the particle’s angular momentum, assuming that the motions of the

Sun and Jupiter are confined to the x− y plane. Therefore, I can parameterize the errors

in terms of the Jacobi constant. There are no analogous conserved quantities for particles

orbiting in planetary systems with more than one planet or if the planetary orbit is eccentric.

In those systems, one can quantify errors for integrators of the type described in Section

3.1.1 in terms of the relative energy error ∆E/E = (E + p0)/E, where E is determined by

the position and velocity of the particle and p0 is the 0−component of the momentum in

the extended phase space. If the equations of motion (3.5)–(3.9) were integrated with no

error, then p0 = −E and ∆E/E = 0.

In this subsection, I treat the Sun as a point mass, and consider trajectories with aphelia

well inside Jupiter’s orbit. I consider two different initial semi-major axes, a = aJ/3 and

a = aJ/6 respectively, where aJ is the semi-major axis of Jupiter. To determine the size

of the errors in CJ as a function of eccentricity, I integrate orbits with initial eccentricity
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e = 0.9, 0.99, 0.999 and 0.9999. I perform integrations for each combination of a and e for 10

different initial, random orientations and an ensemble of step sizes. I run each integration

for a total of 2 × 104 Kepler periods. The integrations are started at perihelion (to mimic

the initial conditions of scattering in the Sun) with a very small h = 10−8R−1
� year. Once

the particle reaches its first aphelion, h is adjusted so that it will provide the desired number

of steps per orbit. The fictitious time step is related to the number of steps per orbit via

the eccentric anomaly ∆u and semi-major axis a by

h = 2
1 − cos ∆u

(GM�/a)1/2 sin∆u
, (3.28)

for the symplectic mapping of Eqs. (3.21)–(3.26) in the case of the Kepler two-body problem.

The number of steps per orbit is given by

N =
2π

∆u
. (3.29)

I show the dependence of the error on the distance from the Sun in Figure 3.1. In

this Figure, I plot the perihelion and aphelion Jacobi constant errors for a trajectory with

initial a = aJ/3 and e = 0.999, integrated with 500 steps/orbit, representative of all the

simulations. I plot only errors at perihelion and aphelion for clarity; a plot showing errors

at each time step would be similar but with more scatter. The interior of the Sun is in the

shaded region (though the integrations were done for a point-mass Sun). From Figure 3.1,

it appears that

|∆CJ/CJ | ∝ r−1 (3.30)

This is a generic feature of the simulations, and implies that the maximum Jacobi constant

or energy error occurs at perihelion. The normalization of the curve in Figure 3.1 depends

on the initial conditions of the simulations, but the shape of this curve is generic. The

errors are oscillatory, i.e., there is no secular growth in the error envelope with time.

In Figure 3.2, I show the maximum Jacobi constant error as a function of initial semi-

major axis ai and eccentricity ei. To find the maximum error, I calculate the error in Jacobi

constant every time e is in the range ei ± 0.1(1− ei). The restriction on e isolates the effect
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Figure 3.1: Jacobi constant errors as a function of distance from the primary for a trajectory
with a = 1.73 AU, followed for 2× 104 Kepler periods. This trajectory was integrated with
500 steps/orbit. Errors are calculated at perihelion and aphelion. The gap in the plot is
due to the fact that the minimum eccentricity of this trajectory is emin = 0.38. Points to
the left of the vertical line lie within the volume of the Sun; however, I used a point-mass
Sun for this integration.
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of eccentricity on |∆CJ/CJ |, since Figure 3.1 demonstrates that the maximum error in a

simulation depends on the largest eccentricity in the orbit. I then plot the maximum error

found among all simulations for the same initial ai and ei. For each type of simulation, the

maximum error occurs at perihelion. Figure 3.2 indicates that the maximum Jacobi constant

error is a decreasing function of the number of steps per orbit, and an increasing function of

semi-major axis and eccentricity. Furthermore, the maximum error for e ∈ ei ± 0.1(1 − ei)

within each simulation is a function of the initial conditions. In the simulations with fixed

eccentricity and a = aJ/6, the spread in these central values is less than a factor of two,

while the spread is about a factor of ten in the a = aJ/3 simulations.

All of these results can be explained in the context of this particular adaptive time step

symplectic integrator, and will inform the choice of the fictitious time step h. My discussion

of the error analysis for this integrator closely follows the approach of Preto & Tremaine

(1999). In that paper, errors are quantified in terms of energy. I can use Eq. (3.27) to

relate Jacobi constant errors to energy errors, such that

|∆CJ | = 2 |∆E| . (3.31)

Since Jz is often tiny in these simulations,

|∆CJ/CJ | ≈ |∆E/E| . (3.32)

Although the mapping in Eqs. (3.21)–(3.26) is symplectic, there is an error associated

with the fact that the the integrator is of finite (second) order. This means that the

mapping actually conserves a slightly different Hamiltonian, which Preto & Tremaine call

Γ̃ = Γ + Γerr, for which Γ is the Hamiltonian in Eq. (3.11) and the error Hamiltonian is

Γerr =
1

12

[
[f(T (p + p0),−f(−U)] ,−f(−U) +

1

2
f(T (p + p0)

]
+ O(h4), (3.33)

where in this case the square brackets are Poisson brackets. This error Hamiltonian can be

found by using the Baker-Campbell-Hausdorff identity (see Section 2 in Preto & Tremaine,
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Figure 3.2: Errors in the Jacobi constant as a function of eccentricity and semi-major axis.
Each point shows the maximum error for 10 trajectories initialized with the same eccentricity
but with random initial orientation, and followed for 2 × 104 Kepler orbits. Since the size
and frequency of the eccentricity oscillations depend on the initial orientation, I use only
the maximum Jacobi errors for each orbit in the trajectory whose eccentricity matches the
initial eccentricity to calculate the averaged maximum error. Open points denote those
trajectories for which the semi-major axis a = aJ/3 = 1.73 AU; closed points refer to
trajectories with a = aJ/6 = 0.87 AU. Circles mark trajectories with initial eccentricity
ei = 0.9999, squares denote those with ei = 0.999, diamonds indicate those with ei = 0.99,
and triangles those with ei = 0.9.
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1999). In the regime where perturbations to the Keplerian potential of the Sun is small,

∆E

E
=

Γi
err − Γerr(Q,P)

f ′(−U)E
(3.34)

≈ Γi
err − Γerr(Q,P)

hrE
, (3.35)

where Γi
err is the value of the error Hamiltonian at the start of the integration and Γerr(Q,P)

is the error along the path.

From (3.35), I recover one result from the simulations, namely that the Jacobi constant

or energy errors scale as r−1. To recover the dependence of the energy errors on semi-

major axis and eccentricity, I must examine the form of the error Hamiltonian. If Upert is

the perturbation in the potential energy from the Kepler potential of the Sun, then in the

context of the three-body problem integrated in the heliocentric frame,

Upert(r, t) = − GMJ

|r− rJ |
+
GMJr · rJ

a3
J

, (3.36)

where MJ is Jupiter’s mass and aJ is its semi-major axis. To first order in Upert, the error

Hamiltonian is

Γerr ≈ h3(GM�)2

24
(

1
2v

2 + p0

)2

{
2
GM�

r2
p0 + 4

p0Upert

r
+ 4

(
1

2
v2 + p0

)
r · ∇Upert

r
(3.37)

−rvivj
∂2Upert

∂xi∂xj
+
v2Upert

r
− 3

(v · r)2Upert

r3
− 6

(v · r) (v · ∇Upert)

r

− ∂

∂t

(
r
∂Upert

∂t
+ 6

v · rUpert

r
+ 2rv · ∇Upert

)}

The first term of this expression is by far the largest, since it has no dependence on Upert.

It is, however, a constant, and so will not enter the expression for ∆E. Terms in (3.37)

directly proportional to Upert will in general be the next largest if a� aJ since these terms

will be first order in either the separation of the particle and Jupiter (|r − rJ |−1) or r/aJ .

Derivatives of Upert result in polynomial dependence of Γerr on |r − rJ |−1 and r/aJ .

To find the errors at perihelion expected for the simulations given the theoretical energy

error (3.35), I calculate only the non-derivative terms of Eq. (3.37) at both the initial

position (for Γi
err) and at perihelion (Γerr(Q,P)). This approximation should be fine for
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small semi-major axes, but derivative terms should be included when the distance between

the particle and Jupiter is of order the semi-major axis, since many terms in Eq. (3.37)

depend on positive integer powers of a/|r − rJ |. The integrations start with a given h

corresponding to a number N of steps/orbit at aphelion, so that r = a(1+ e) in Eq. (3.37),

and r · v = 0. To lowest order,

Γi
err ≈ −E

{
h3GM�

12
+
h3a(5 + 3e)Upert

12

}
, (3.38)

where E = −GM�/2a is the initial energy. I can calculate the extremes in Γi
err by recog-

nizing that the magnitude of Upert is maximized when the aphelion of the particle orbit is

aligned with Jupiter’s position with respect to the Sun, and minimized when the position

vectors are orthogonal. Therefore, the range of initial Hamiltonian errors is

Γi
err ∈

{
− E




h3GM�

12
+
h3(5 + 3e)GMJ

12


− a√

a2
J + a2(1 + e)2






 , (3.39)

−E
{
h3GM�

12
+
h3(5 + 3e)GMJ

12

[
− a

|aJ − a(1 + e)| +
a

aJ

a(1 + e)

aJ

]}}
.

The range of initial errors in Γi
err increases as a function of semi-major axis. At perihelion,

if the energy error is small, the range of Hamiltonian errors is

Γerr ∈
{

− E




h3GM�

12
+
h3(5 − 3e)GMJ

12


− a√

a2
J + a2(1 − e)2






 , (3.40)

−E
{
h3GM�

12
+
h3(5 − 3e)GMJ

12

[
− a

|aJ − a(1 − e)| +
a

aJ

a(1 − e)

aJ

]} }

The range for Γerr is small for the range of eccentricities I consider in the simulations

e & 0.9. For small energy errors, the fractional energy error (Eq. 3.35) does not depend

on the terms in Γi
err and Γerr directly proportional to GM�. Therefore, the terms linear in
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Upert dominate the energy error, which leads to an energy error range at perihelion

∆E

E
=

Γi
err − Γerr

hEa(1 − e)
(3.41)

∈
{

− h2GMJ

12a(1 − e)



(5 + 3e)


− a√

a2
J + a2(1 + e)2


 +

(5 − 3e)a

aJ



 (3.42)

− h2GMJ

12a(1 − e)

{
(5 + 3e)

[
− a

|aJ − a(1 + e)| +
a

aJ

a(1 + e)

aJ

]
+

(5 − 3e)a

aJ

}}

For (1 − e) � 1 and a < aJ/2, this expression simplifies to

∆E

E
∈

{
− h2GMJ

6aJ(1 − e)



1 − 4√

1 + 4a2/a2
J



 , (3.43)

− h2GMJ

6aJ(1 − e)

{
1 − 4

(
1

1 − 2a/aJ
+

2a

aJ

)}}
(3.44)

There are three features in Figure 3.2 that can be explained with Eq. (3.42): the

dependence of the error on the number of steps per orbit, eccentricity, and semi-major axis.

The first two can be extracted easily from Eq. (3.42). The energy error only depends on

the number of steps per orbit through h, and ∆E/E ∝ h2. From Eqs. (3.28) and (3.29),

N ∝ (∆u)−1 ∝ h−1 for ∆u� 1, so that ∆E/E ∝ N−2. The only dependence of the energy

error on eccentricity comes from the denominator of (3.43), ∆E/E ∝ (1 − e)−1, which is a

consequence of the fact that I the energy error is largest at perihelion rp = a(1 − e). Since

the simulations in this section are performed for e = 0.9, 0.99, 0.999, and 0.9999, for a given

number of steps per orbit and semi-major axis, energy errors should be spaced by factors

of 10, which is what is observed in Figure 3.2.

In Figure 3.2, it appears that the maximum energy error for a = aJ/3 is about an order

of magnitude larger than that of a = aJ/6. Because of this factor, for a fixed number of

steps per orbit, the energy error curve for a = aJ/3 overlaps the energy error curve for

a = aJ/6 but with the next highest eccentricity simulated. The ratio of the maximum

energy error (3.42) for a = aJ/3 to that of a = aJ/6 is about 4. However, the ratio of the

maximum errors is around 10 using the full first order expression for Γerr, Eq. (3.37). This

is the factor of 10 that I see in the simulations. The range of energy error is a function
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of the initial semi-major axis because the range of possible energy errors in Eq. (3.42) is

strongly dependent on the initial orientation of the orbit, with the maximum possible energy

error likely only for a small subset (the initial position vector r almost perfectly aligned

with Jupiter’s position vector) of possible initial orientations. For example, the maximum

energy error for a = aJ/6 is only about 20% higher than the minimum value, but can be

about a factor of 10 higher for a = aJ/3.

This simple analytic description does not work so well for large errors. In those cases,

the error curves for fixed a and e in Figure 3.2 do not exactly follow ∆E/E ∝ N−2 since

the analytic approximation for Eq. (3.42) only holds for small energy errors.

To set the fictitious time step h for the simulations in this thesis, it is preferable to

consider errors at a fixed, small distance from the Sun rather than exclusively at perihelion.

This is because I use a mapping technique to follow perihelion passages where rp ≤ 2R�.

Therefore, I want to impose a maximum energy (or Jacobi constant) error for the simulations

at r = 2R�. In Figure 3.3, I show the maximum energy error as a function of the particle’s

semi-major axis at r = 2R� in the limit that e = 1. For reference, |∆CJ/CJ | = |∆E/E|.

The error has a sharp peak at a = 0.5aJ , since in this case the aphelion distance coincides

with Jupiter’s orbit. The main point of this Figure is that while small numbers of steps per

orbit, and hence, small values of h can be used to integrate fairly small orbits (a . 1 AU =

0.19aJ ) with a maximum Jacobi constant error of |∆CJ/CJ | = 10−4, larger orbits need to

be integrated with far more steps per orbit to achieve similar accuracy.

A full discussion of how to choose the time step will be deferred to Section 3.3, after I

consider the effects of close encounters with Jupiter in Section 3.1.3.

3.1.3 Special Cases: Strong Perturbations to the Keplerian Potential

While I would like to use this adaptive time step integrator as much as possible, keeping

the fictitious step h fixed, there are two situations which must be handled separately.
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Figure 3.3: Energy errors using the maximum value of |∆E/E| for a given a at r = 2 R�

using 50 steps/orbit (black solid line), 100 steps/orbit (red dashed line), and 500 steps/orbit
(blue long dashes). There is a sharp peak at r = aJ/2 where the initial position of the
particle lies exactly within Jupiter. The energy error asymptotes at large values of a.
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Inside the Sun

The interior of the Sun has a potential that deviates strongly from Keplerian. The integrator

described in Section 3.1.1 works badly inside the Sun, both because it is designed for nearly

Keplerian potentials and because the gravitational potential in the Sun is slower to calculate.

Thus, I replace the integration through the Sun by a map. I exploit the fact that tidal forces

from the planets are small near the Sun, so that I can ignore the planets while the particle

is inside the Sun. Since the two-body problem can be solved exactly, I can define a region

about the Sun (called a “bubble,” with a typical radius of 0.1 AU) for which I use the exact

solutions to the two-body problem. In reality, I create a map for the bubble but only use

it if the orbital perihelion lies within r = 2R�. At one point, I mapped all orbits with

rp < 0.1 AU, so the bubble boundary of 0.1 AU is somewhat of a relic. I can map the

incoming position and velocity to the outgoing position and velocity using look-up tables

for

∆t(a, e) =
2√
GM�

∫ rb

rp(a,e)

dr√
2[±1/2a − Φ̃�(r)] ± a(1 − e2)/r2

(3.45)

∆φ(a, e) = 2
√

±a(e2 − 1)

∫ rb

rp(a,e)

dr

r2
√

2[±1/2a − Φ̃�(r)] ± a(1 − e2)/r2
(3.46)

which are the time ∆t and phase ∆φ through which the particle passes in the bubble region,

both functions of the semi-major axis a and eccentricity e. By my convention, a is always

positive, such that E = GM�/2a for hyperbolic orbits and E = −GM�/2a for eccentric

orbits. The ± signs in Eqs. (3.45) and (3.46) correspond to hyperbolic orbits (e > 1) and

elliptical orbits (e < 1) respectively. I have normalized the solar potential Φ�(r) by GM�,

so that Φ̃� = Φ�/GM�. I have written ∆t and ∆φ in terms of a and e instead of the

energy and angular momentum for reasons that will soon become apparent. Note that rb

is the bubble radius and rp is the true perihelion, defined by

dr

dt

∣∣∣∣∣
rp

= 0 (3.47)

=

√
2
(
±1/2a − Φ̃�(rp)

)
± a(1 − e2)/r2p. (3.48)
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I parameterize the look-up tables in terms of the semi-major axis and Keplerian perihelion

rK = |a(1 − e)|.

There is one subtlety in matching the map through the bubble to the time-transformed

integration outside of bubble. In the Keplerian two-body problem, one solves the equations

of motion dp/dt and dq/dt instead of dp/ds and dq/ds. If one divides dq/ds and dp/ds by

the differential equation for the time coordinate, the time-transformed equations of motion

are

dq

dt

∣∣∣∣∣
Γ

=
dq/ds

dt/ds
(3.49)

=
f ′(T + p0)dT/dp

f ′(T + p0)
(3.50)

= p (3.51)

dp

dt

∣∣∣∣∣
Γ

=
dp/ds

dt/ds
(3.52)

= −f
′(−U)∂U/∂q

f ′(T + p0)
(3.53)

= − f ′(−U)

f ′(T + p0)

∂U

∂q
. (3.54)

The second of these differs from the equations of motion of the original Hamiltonian by a

multiplicative factor

µ = f ′(−U)/f ′(T + p0), (3.55)

in other words, the particle follows a Kepler orbit about a Sun of mass µM�. Therefore, I

calculate the orbital elements using

a =

∣∣∣∣
p0

2µGM�

∣∣∣∣ (3.56)

e =
√

1 ± J2/(µGM�a), (3.57)

where the upper sign should be used for hyperbolic orbits, and lower for elliptical orbits. I

use a look-up table for ∆t and ∆φ with the modification that ∆t, as calculated for a and e

with µ = 1, must be multiplied by a factor of µ−1/2. The change in phase is unaffected by

the choice of central mass since it is a purely geometric quantity.
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Similar lookup tables are also used to determine the perihelion rp (as a function of semi-

major axis and eccentricity, and which is faster than calculating the perihelion on the fly)

and optical depth (and hence, scattering probability) in the Sun. I discuss rescattering in

the Sun in Section 3.2.

The procedure for using the mapping, then, is as follows. Once the particle crosses the

bubble boundary, its perihelion is determined. If the perihelion lies within r = 2R� of the

center of the Sun, I halt the adaptive time step integrator, and rotate to the orbital plane of

the particle-Sun system. Since the integration does not stop exactly at the bubble boundary,

I must calculate the difference in time δt and orbital phase δφ between the particle’s position

and the bubble boundary, which can be done analytically. I then determine µ, a, and e. I

use those values to find ∆t and ∆φ from the map, and then rotate the position vector by

an angle ∆φ − δφ in the orbital plane. The velocity vector can be found with respect to

the position vector since the energy and angular momentum are known. I transform the

position and velocity vectors back to the reference plane, and restart the adaptive time step

integrator.

I demonstrate the robustness of the map in Figure 3.4. I will focus on the upper left-hand

panel, and discuss the other panels in later sections. In the upper left-hand panel, I show

errors in the Jacobi constant over a 500 Myr time span for the restricted circular three-body

problem. The orbit enters the Sun ∼ 107 times in this time span. I sample the orbit at the

first aphelion after a 105 yr interval from the previous sample, and there are approximately

100 steps/orbit. This Figure shows that there are only oscillatory errors throughout this

long-term integration, and these fractional errors never exceed 10−6 at aphelion. Long-term

integrations of the two-body problem using the map demonstrate energy errors only at the

level of machine precision. Therefore, I am confident that the map is not a source of error

in the integrations.
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Figure 3.4: Error in the Jacobi constant as a function of time for several particles. The
Jacobi constant is recorded at aphelion at 105 year intervals. Top left: A particle with
a = 1.54 AU. This particle repeatedly goes through the Sun (about 107 times), but never
goes through the bubble around Jupiter. It is integrated with h = 6× 10−5R−1

� year, which
corresponds to ≈ 100 steps/orbit. Top right: A particle that gets stuck near a Sun-skimming
2:1 resonance with Jupiter. This particle repeatedly goes through the Jupiter bubble. It
is integrated with h = 2 × 10−5R−1

�
year, which corresponds to ≈ 350 steps/orbit. Bottom

left: A particle gets stuck near a 3:2 resonance with Jupiter. This orbit was integrated
with h = 1.5 × 10−5R−1

� year, which corresponds to ≈ 650 steps/orbit. Bottom right: This
particle repeatedly crosses rc, the transition radius between barycentric and heliocentric
coordinates (dashed green line marks rc/2, the crossing semi-major axis for an orbit with
e ∼ 1) and has its last aphelion before ejection from the solar system at t = 1.6 × 106

years. It is integrated with h = 2 × 10−6R−1
� year, which corresponded initially to 9 × 103

steps/orbit.
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Close Encounters of the Planetary Kind

While the adaptive time step integrator works well in a near-Keplerian potential, one must

treat close encounters with planets more carefully. If the time step is too large near a planet,

the particle fails to “resolve” the force from the planet. This can cause growing errors in

the particle’s trajectory. Since I use an f(x) that is optimized to the potential of the Sun,

the only way to achieve a small time step near each planet is to either make the fictitious

time step h small and fixed or to switch to a different integration method near each planet

while using the method of Section 3.1.1 with a reasonably large h for the rest of the orbit.

The advantage of the former approach is that it does not break the symplectic nature of

the integrator. However, it is also prohibitively computationally expensive. Therefore, I

use the latter approach.

I define a spherical region (“bubble”) about each planet for which I allow a different

integration scheme, while continuing to use the adaptive time step symplectic integrator

(Section 3.1.1) outside the spheres. The transition between the integration schemes is not

symplectic, but I reduce errors in the integration by enforcing an accuracy requirement on

|∆E/E| = |(p0 + E)/E| = |(−H + E)/E| in the bubble of each planet.

In the bubble of each planet, I continue to use the adaptive time step integrator, but

the value of h′ (the prime denotes the fact that this fictitious time step is only used within

a planet bubble) used in the bubble is selected to keep the quantity |∆E/E| as small as

possible while also keeping the total integration time short. To find the optimal value of h′,

I use the following algorithm. When a particle first enters a bubble, I record the particle’s

energy error at the first step, |∆Ei/Ei|. Then, I integrate the particle’s trajectory through

the bubble using the default value of h. As the particle is about to exit the bubble, I

calculate the energy error |∆Ef/Ef |. If the energy error meets the accuracy criterion, or if

it is less than |∆Ei/Ei|, then the integration is allowed to continue normally. If, however,

|∆Ef/Ef | does not satisfy the accuracy criterion, then I restart the integration in the bubble

from the point at which the particle first entered with a smaller fictitious time step h′. This

process iterates until either the energy accuracy condition is satisfied or the energy error
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plateaus in value. If the energy error plateaus in value, whichever trajectory (corresponding

to a particular choice of h′) has the minimum |∆Ef/Ef | is chosen.

The choice of the bubble size is related to the choice of fiducial value of h and to the

mass of the planet. A larger value of h means that the bubble needs to be larger to ensure

that the planet’s field is properly resolved. Planets with larger masses will require larger

bubbles than smaller planets because the force on the particle scales with the planet mass.

In the weak scattering simulations, I choose to keep the bubble size fixed for all orbits, while

for the gravitational capture simulations I use a larger bubble for higher energy orbits. In

general, I tune h so that the typical energy errors for all energies are similar near each

planet. The optimum sizes of the bubbles are ∼ 0.05 AU for the inner planets and ∼ 1 − 3

AU for the outer planets of the solar system if I require that |∆E/E| ∼ 10−7 − 10−6. In

Section 3.3, I describe the exact choices for the bubble size and accuracy criterion for each

simulation.

A complication arises when particles experience large changes in energy in their passage

through the planetary bubble. In this case, the value of h that guaranteed a certain precision

in |∆E/E| in the pre-encounter orbit may be either too large (for adequate precision) or

too small (it will slow down the orbital integration). Therefore, I change the value of h at

the next aphelion. I change h at the aphelion because this is the point at which energy

errors are at a minimum in the orbit. Again, this procedure breaks the symplectic nature of

the integrator, but by changing h at aphelion, my experiments show that I minimize errors.

In Section 3.3, I outline how h is chosen for the initial orbits, and how h is changed if the

particle experiences significant changes in energy from planetary encounters.

I demonstrate the performance of the bubble for the case of the 3-body problem in

Figure 3.4. In this Figure, the fractional error of the Jacobi constant is plotted against the

time since the initial scatter in the Sun that produced a bound orbit, and I show the first

500 Myr of the integrations. The Jacobi constant is measured at the aphelion of the orbit

at 105 year intervals. The trajectories of the particles in the upper right and bottom panels

repeatedly pass through the bubble around Jupiter. For these integrations, the radius of the



117

bubble about Jupiter was ≈ 2.3 AU, and the energy criterion was |∆Ef/Ef | < 2 × 10−7.

There are no secular changes of the Jacobi constant with time. Therefore, even though

the planet bubble disrupts the symplecticity of the integrator, the integrator tracks the

Hamiltonian well.

3.1.4 Coordinate Choice

For most of the integration, I use a heliocentric coordinate system for both the particles

and the planets. There are two main reasons why I choose a heliocentric system. First,

it is much simpler to use heliocentric coordinates for passages through the Sun. Secondly,

consider the gravitational potential of the planets in the heliocentric frame,

Φ(r)planets = Φdirect(r) + Φindirect(r) (3.58)

= −
∑

P

GMP

|r− rP |
+

∑

P

GMP r · rP

x3
P

, (3.59)

where the indirect term arises from the fact that this coordinate system is not the center-

of-mass coordinate system. For orbits that are well within a planet’s orbit, the direct term

can be expanded into spherical harmonics

Φdirect(r) =
∑

P

GMP

|r − rP |
(3.60)

=
∑

P

[
−GMP

rP
− GMP

r3P
r · rP − GMP

rP

∞∑

l=2

(
r

rP

)l

Pl

(
r · rP

rrP

)]
, (3.61)

where the Pl are Legendre polynomials. The dipole term of the direct potential is canceled

by the indirect potential. Therefore, the primary contributor to the force on the particle by

the planet comes from the l = 2 tidal term of the potential; in other words, the tidal forces

near the Sun are much smaller in the heliocentric frame.

While there are distinct advantages to using the heliocentric frame, it is not desirable to

use the heliocentric frame in the case of large orbits. This is due to the fact that the indirect

term of the potential dominates the potential at large distances from the Sun. This poses a

problem for the adaptive time step integrator, since my choice of g = −GM�/U = |r− r�|

is only optimal if the Keplerian solar potential is dominant. Therefore, I choose to work in
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the barycentric frame at large distances.

In practice, this means switching between heliocentric and barycentric coordinate sys-

tems for long-period orbits. I choose the crossover radius such that

max |Φindirect,P (rc, θP = 0)| = ε
GM�

rc
, (3.62)

where θP is the angle between r and rP , rc is the crossover radius, the “max” signifies the

planet for the planet P for which the indirect potential is strongest, and ε is a factor . 1.

In our solar system, the planet for which the indirect potential is strongest is Jupiter. The

choice of ε is somewhat arbitrary. Therefore, I find the crossover point to be

MJrc
a2

J

= ε
M�

rc
, (3.63)

or

rc ≈
√
εM�/MJaJ . (3.64)

In changing coordinates, one breaks the symplectic flow of the integrator. Therefore, one

must treat the Hamiltonian, and therefore p0, carefully at the crossover. I choose to treat

the transition the same way I treat the transition into the bubble about the Sun. Namely,

I calculate µ (Eq. 3.55), the factor by which the gravitational potential is modified in the

integrator (see Eq. 3.54), in the initial coordinate frame i. Then I set

p0 |f = −µiE(r, t)|f , (3.65)

where quantities calculated in the final frame are denoted by f , and E is the energy derived

from the position and velocity coordinates of the particle. While this transition is not

symplectic, in practice it conserves the Jacobi constant to adequate precision for the circular

three-body problem, for orbits that repeatedly cross the transition. This is demonstrated

in the lower left panel in Figure 3.4, an orbit for which the initial semi-major axis is 50 AU.

In this integration, ε = 0.1, which translates to a crossover radius of 53 AU.
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3.2 Subsequent Scattering in the Sun

Each time a particle passes through the Sun, there is a probability

Pscatt = 1 − e−τ (3.66)

that it will be scattered, given the optical depth τ along the path. Since the WIMP-nucleon

cross sections relevant to this paper imply low opacity in the Sun (τ . 10−3 for the DAMA

simulation, τ . 10−5 for all other simulations), the scattering probability per solar passage

is well approximated by

Pscatt = 1 −
(
1 − τ + O(τ2)

)
(3.67)

≈ τ. (3.68)

Thus, to simulate scattering in the Sun, one simply generates a random number between 0

and 1, and if that number is less than the total optical depth τ along the path, the particle

scatters.

I create a table for optical depth indexed by the semi-major axis and Kepler perihelion

of the orbit, just as I did for the orbit integration in the Sun in Section 3.1.3. I interpolate

in this table to determine the optical depth for a particular orbit through the Sun.

More precisely, the optical depth (in differential form) is given by

dτ

dldQ
=

∑

A

dτA
dldQ

(3.69)

=
∑

A

nA(l)
dσA

dQ
, (3.70)

where l denotes the particle trajectory, nA(l) is the number density of element A in the Sun

at position l along the path, and dσA/dQ is the differential elastic scattering cross section

with respect to the energy transfer Q between element A and the WIMP. The integral over

energy transfer can be computed using the form of the differential cross section in Eq. (B.1)



120

and the form factor in Eq. (B.2):

dτ

dl
=

∑

A

nA(l)

∫ Qmax

0

dσA

dQ
(3.71)

=
∑

A

nA(l)
2mA

πv(l)2
[Zfp + (A− Z)fn]2QA

(
1 − e−Qmax,A/QA

)
, (3.72)

where I have used the approximation of zero-temperature behavior of nuclei in the Sun to

set vrel = v(l). The expression for the maximum energy transfer Qmax is extracted from

Eq. (2.23):

Qmax,A = 2
µ2

A

mA
v(l)2, (3.73)

such that the optical depth along the path can be expressed as:

dτ

dl
=

2

π

∑

A

mAnA(l)QA[Zfp + (A− Z)fn]2
1

v(l)2

(
1 − e−2µ2

Av(l)2/mAQA

)
. (3.74)

The integral of the optical depth over the particle trajectory is greatly simplified because

the Sun is modeled as spherical and the torque on the particle by Jupiter is negligible in

the Sun. Therefore,

dl = v(t)dt (3.75)

= v(t(r))

∣∣∣∣
dt

dr

∣∣∣∣ dr (3.76)

=
v(r(t))

|vr(r(t))|
dr, (3.77)

where

v(E, r) =
√

2[E − Φ�(r)] (3.78)

is the particle’s speed and

|vr(E, J, r)| =
√

2[E − Φ�(r)] − J2/r2 (3.79)

is the radial velocity of the particle. I have written the speeds in terms of the energy E and

angular momentum J for now. Therefore, I can write the optical depth as a function of the

particle’s position from the center of the Sun r and the constants of motion, so that

dτ(E, J)

dr
=

v(r)

|vr(r)|
dτ

dl
. (3.80)
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Thus, the total optical depth along the path is

τ(E, J) =
4

π

∑

A

mAQA[Zfp + (A− Z)fn]2 (3.81)

×
∫ R�

rp

nA(r)

v(E, r)|vr(E, J, r)|
(
1 − e−2µ2

Av2(E,r)/mAQA

)
dr.

The extra factor of two in the expression for τ(E, J) comes from the fact that the integrand

is a function of the radius r instead of the total path l , and so one must account for the

pre- and post-perihelion trajectories.

In order to express the optical depth τ as a function of the semi-major axis and eccen-

tricity, I use the relations

E = ±GMc

2a
(3.82)

J2 = ±GMca(e
2 − 1), (3.83)

where Mc = µM� is the central mass, as determined by Eq. (3.55), and the upper (lower)

sign is used for hyperbolic (elliptical) orbits. Therefore,

ṽ(a, r) = v(a, r)/
√
GMc =

√
2
[
±1/2a− Φ̃�(r)

]
(3.84)

|ṽ(a, e, r)| = |vr(a, e, r)|/
√
GMc =

√
2
[
±1/2a− Φ̃�(r)

]
∓ a(e2 − 1)/r2. (3.85)

If I insert these expression into Eq. (3.81),

τ(a, e) =
4

π

1

GMc

∑

A

mAQA[Zfp + (A− Z)fn]2 (3.86)

×
∫ R�

rp

nA(r)

ṽ(a, e, r)|ṽr(a, e, r)|
(
1 − e−2µ2

AGMcṽ2(a,r)/mAQA

)
dr.

I make a look-up table for τ using for the choice µ = 1, and then scale τ by a factor of µ−1.

There is also a factor of µ in the exponent. However, its impact on τ is negligible since

|µ− 1| ∼ 10−6 − 10−5.

If the particle scatters in the Sun, its new phase space coordinates can be determined
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by sampling the scattering distribution

dτ(E, J)

drdΩ
=

∑

A

nA(r)
v(E, r)

|vr(E, J, r)|
dσA

dΩ
(3.87)

=
∑

A

σA

4π
nA(r)

v(E, r)

|vr(E, J, r)|
e−Q(cos θ)/QA . (3.88)

Since the particle can be scattered either before or after the perihelion of its original orbit

with equal probability, I randomly assign the scatter to occur before or after the perihelion

of the original orbit. Therefore, these data allow one to determine the scattering position

and the direction of the scattered particle. In order to determine the final energy E′ = E−Q

of the WIMP, it is necessary to determine the nuclear species from which the dark matter

particle scatters. To determine this, I weight the scattering probability by the nuclear

species’ contribution to dτ/drdΩ. Therefore, since I know the initial energy, the center-of-

mass scattering angle, and the species of nucleus which scattered the dark matter particle,

I can determine E′, and hence, the final center-of-mass velocity v′. I translate this vector

to the orbital plane of the system, and then explicitly integrate the orbit using equations

of the form Eqs. (3.45) and (3.46) (with the appropriate integration limits) to the bubble

boundary. At this point, I translate the orbit to the reference plane of the system, and the

adaptive time step integration resumes.

3.3 Simulation Specifics

In Figures 3.5 and 3.6, I present a schematic of the integration algorithm for the weak

scattering and gravitational capture simulations respectively. I will discuss each of the

flowcharts separately (Sections 3.3.1 and 3.3.2), and discuss each decision point in detail.

Finally, I will describe the computers used for the simulations (Section 3.3.3).

3.3.1 Weak Scattering Simulations

I will start with the weak scattering flow chart. There are six main things that need

to be set in order to run the simulations: starting conditions; the radius at which the
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heliocentric-barycentric coordinate change needs to be made, rc; methods for initializing h

and potentially changing h at later times; conditions for passing through and scattering in

the Sun; the size of the bubble about Jupiter, lJ , and the accuracy criterion |∆E/E|; and

conditions for terminating the simulation. I will discuss each point in turn, following the

flowchart (Figure 3.5).

Starting Conditions

I start all particle integrations at perihelion, even though the radius at which the halo

particles first scatter onto bound orbits need not correspond to this perihelion. I do this for

simplicity. I follow all particles after the initial scatter, using the map to evolve the particles

to the Sun bubble boundary (0.1 AU) using map described in Section 3.1.3. I treat τ = 0 for

the first passage out of the Sun. In order to account for the fact that particles may experience

a second scatter before leaving the Sun for the first time, I perform a rescattering Monte

Carlo when I construct the distribution functions (see Chapter 4).

Once the particles have reached the bubble boundary, I initialize the adaptive time

step symplectic integrator (Section 3.1.1), setting h = 10−8R−1
� year and integrating the

equations of motion in heliocentric coordinates. Even though energy errors in the the

adaptive time step symplectic integrator are generally higher if the integration is started

at perihelion rather than at aphelion, the magnitude of the errors will be tiny since h is

so small (Preto & Tremaine, 1999). The fact that energy errors are so much larger when

the integration is started at perihelion is why I do not start the integration near perihelion

with the fiducial value of h (discussed below) but use the combination of the map and the

integration with small h until the particle reaches aphelion before resetting h. With this

choice of initial h, a particle with initial semi-major axis a = 1 AU will be integrated with

4.7 × 105 steps/orbit, while a particle with a = 100 AU will be integrated with 4.7 × 106

steps/orbit. This scaling is due to the fact that h ∝ a1/2, as per Eq. (3.28). If the semi-

major axis exceeds rc/2, it may be necessary to change to barycentric coordinates before

the particle reaches aphelion for the first time.



124

END

adaptive timestep integrator

heliocentric coordinates

fiducial h

Cross rc from
above?

No

Yes

Use map to r=0.1 AU

h = 10^−8 R_0^−1 year

fiducial h

barycentric coordinates

adaptive timestep integrator

Cross rc from
above?

No

First apocenter?

First apocenter?

No

Yes

Yeschange fiducial h

No

In planet

bubble?

Yes

adaptive timestep integrator

heliocentric coordinates

optimal h’

a>0.3 AU?

Scatter?

Use map

No

r > 2R ?o

Yes

In Sun

bubble?

Yes

Does p_0 change
by > 20%?

END

No

Yes

No

No

Yes

No

Yes

Weak Scattering Simulations

START
r = r_p

Yes

No

change fiducial h

Yes

No

r > 5000 AU?

change fiducial h

Figure 3.5: Flowchart for the simulation algorithm for the weak scattering experiments.
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Table 3.1: The fictitious time step h as a function of semi-major axis for the DAMA run.

a range [AU] h[R−1
�

yr]

a < 0.75 1 × 10−4

0.75 ≤ a < 1.1 7 × 10−5

1.1 ≤ a < 1.6 6 × 10−5

1.6 ≤ a < 2.2 5 × 10−5

2.2 ≤ a < 3.5 4 × 10−5

3.5 ≤ a < 6.2 3 × 10−5

6.2 ≤ a < 11 2 × 10−5

11 ≤ a < 13 9 × 10−6

13 ≤ a < 30 2 × 10−6

30 ≤ a < 45 1 × 10−6

45 ≤ a < 120 6 × 10−7

120 ≤ a < 200 4 × 10−7

200 ≤ a < 500 3 × 10−7

a > 500 or unbound 2 × 10−7

Coordinate Change

For the weak scattering simulations, I set ε = 0.1 (Eq. 3.62), thus setting the transition

radius between the heliocentric and barycentric coordinated regimes to rc = 53 AU. This is

large enough that only a small percentage of particles routinely cross the transition radius,

but small enough that the heliocentric potential does not have too large a contribution from

the indirect potential.

Setting h

After the particles reach their first aphelion, h is reset according the values listed in Tables

3.1 (DAMA) and 3.2 (CDMS, Medium Mass, and Large Mass). These values of h are chosen

such that both errors at perihelion (|∆E/E| < 10−4) and near Jupiter (|∆E/E| < 10−6)

are small. The combination of the values of h and the Jupiter bubble radius lJ (see below)

were determined empirically. I used slightly smaller values of h for some semi-major axes

in the CDMS, Medium Mass, and Large Mass runs compared to the DAMA run in order

to check that resonance sticking was not a function of properties of the Jupiter bubble.

As discussed in Section 3.1.3, a particle’s energy (and hence, semi-major axis) may
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Table 3.2: The fictitious time step h as a function of semi-major axis for the CDMS, Medium
Mass, and Large Mass runs.

a range [AU] h[R−1
�

yr]

< 0.75 1 × 10−4

0.75 ≤ a < 1.1 7 × 10−5

1.1 ≤ a < 1.6 6 × 10−5

1.6 ≤ a < 3.5 2 × 10−5

3.5 ≤ a < 6.2 1.5 × 10−5

6.2 ≤ a < 11 1 × 10−5

11 ≤ a < 30 2 × 10−6

30 ≤ a < 45 1 × 10−6

45 ≤ a < 120 6 × 10−7

120 ≤ a < 200 4 × 10−7

200 ≤ a < 500 3 × 10−7

a > 500 or unbound 2 × 10−7

change throughout the simulation. In order to ensure appropriate values of h during the

simulation, I flag particles when they go through the Jupiter bubble. If the energy changes

by 20% or more from when the particle enters the bubble to when it exits, the particle is

flagged to have h adjusted at the next aphelion. I do not readjust h after every aphelion, or

after each time the particle passes through the bubble, because very frequent changes in h

can induce secular evolution in the Jacobi constant. I impose any changes in h at aphelion

instead of the bubble boundary to reduce such secular changes, since I have determined

experimentally that aphelion is the optimal point at which to change h.

The Sun Bubble

When a particle first crosses into the bubble about the Sun, I calculate its perihelion. If

the perihelion is larger than 2R�, I continue the adaptive time step symplectic integration.

If, however, the perihelion lies within 2R� of the center of the Sun, I proceed to map its

current position and velocity to its position and velocity as it exits the bubble according to

the prescription of Section 3.1.3. If the perihelion lies within the Sun, I employ a Monte

Carlo simulation of scattering in the Sun, according the the method of Section 3.2. The
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vast majority of the time, the particle does not scatter, and I simply use the map to move

the particle back to the edge of the bubble. If the particle rescatters onto an orbit with

semi-major axis a < 0.3 AU, I terminate the integration. If the particle rescatters onto an

orbit with a > 0.3 AU, I use the method of Section 3.2 to evolve the new orbit to the edge

of the bubble, and then resume the adaptive time step symplectic integration.

The Jupiter Bubble

For the DAMA, CDMS, and Medium Mass simulations, I set the Jupiter bubble boundary

to be lJ = 1.7 AU, and the accuracy criterion to be |∆Ef/Ef | < 10−6. I adjusted this value

for some particles in order to speed up the integration. The reason for adjusting this value

was that some particles had generically slightly smaller initial |∆Ei/Ei| than |∆Ef/Ef |, and

it took a longer time with |∆Ef/Ef | = 10−6 to reach a sufficiently flat plateau in |∆Ef/Ef |

than with a slightly larger accuracy criterion. I also set lJ = 3.4 AU past 500 Myr for

the Medium Mass simulation, mostly to determine if there were any effects of a larger lJ

on the simulations. There were no changes the distribution function resulting from this

change. For the Large Mass simulation, I experimented with a lower value of the accuracy

criterion ( |∆Ef/Ef | < 2 × 10−7 for the first 500 Myr, |∆Ef/Ef | < 3 × 10−7 later) and a

larger bubble, lJ = 2.1 AU. I used the larger accuracy criterion for later times to speed up

the integration. The only effect the larger accuracy criterion had was to raise slightly the

maximum energy error per orbit.

Stopping Conditions

There are three reasons for terminating an integration. If the particle crosses outward

through the shell r = 5000 AU, the integration stops. Most of the power in the distribution

function comes from particles on much smaller orbits, so I do not lose much (if anything)

by imposing this sort of termination condition instead of a strict condition on whether or

not the particle is unbound. Particles crossing this shell will rarely cross the Earth’s orbit

again. Secondly, if the particle rescatters in the Sun onto an orbit with a < 0.3 AU, I halt
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Table 3.3: The initial integration conditions for the gravitational capture simulation as a
function of initial speed v and Kepler perihelion rp. The values of h are in units of R−1

� yr.

Initial speed v [km s−1] rp < 5 AU rp > 5 AU

v < 10 2 × 10−7 3 × 10−7

10 ≤ v < 20 5 × 10−7 10−6

v ≥ 20 10−6 2 × 10−6

the integration since the particle will soon thermalize in the Sun and is uninteresting for

my purposes. Thirdly, if the particle survives for a time t = 4.5 Gyr, I stop the integration

since this is approximately the lifetime of the solar system.

3.3.2 Gravitational Scattering Simulations

I will discuss the decision points in the gravitational capture simulation flowchart in the

same order as in Section 3.3.1.

Starting Conditions

I use the method of Section 2.3 to set the initial conditions, starting all particles at a

distance R = 1000 AU from the Sun. Using larger values of R does not change the results.

I choose the initial conditions in the heliocentric frame, and then translate the coordinates

to the barycentric frame to start the integration. I use the adaptive time step symplectic

integrator with h set to the values listed in Table 3.3. The initial value of h is a function of

the particle’s initial speed (or energy) and two-body perihelion relative to the Sun. Particles

with low energy and low angular momentum need to be integrated with larger numbers of

steps per orbit, since they will go closer the Sun (recall that energy errors increase with

decreasing distance to the Sun).

Coordinate Change

As in the case of the weak scattering simulations, I set ε = 0.1 and rc = 53 AU.
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Figure 3.6: Flowchart for the simulation algorithm for the gravitational capture experi-
ments.
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Table 3.4: Choices for the fictitious time step h as a function of semi-major axis for the
gravitational capture simulations. The semi-major axis refers to bound particles unless
otherwise indicated.

a range [AU] h[R−1
�

yr]

< 0.75 10−4

0.75 ≤ a < 1.1 7 × 10−5

1.1 ≤ a < 1.6 6 × 10−5

1.6 ≤ a < 3.5 2 × 10−5

3.5 ≤ a < 6.2 1.5 × 10−5

6.2 ≤ a < 13 7 × 10−6

13 ≤ a < 22 10−6

22 ≤ a < 30 7 × 10−7

30 ≤ a < 45 6 × 10−7

45 ≤ a < 120 5 × 10−7

120 ≤ a < 200 4 × 10−7

200 ≤ a < 500 3 × 10−7

a > 500 or unbound 2 × 10−7

Setting h

I initially set h according to Table 3.3. This is sufficient for a “first pass” through the solar

system. For longer term integrations, in order to both control errors near Jupiter and to

speed up integration if particles settle onto tighter orbits, I reset h after the particles pass

through the Jupiter bubble. I then set h according to Table 3.4. I allow h to change after

each passage through the Jupiter bubble up to 10 Myr; however, to control for errors caused

by breaking the symplectic nature of the integrator repeatedly, I only allow h to be reset if

the energy changes by more than 20% through a Jupiter bubble passage after that time.

The Sun Bubble

I use the same prescription as in Section 3.3.1 to treat particles in the Sun bubble.

The Jupiter Bubble

For the gravitational capture simulations, I set the accuracy criterion to |∆Ef/Ef | < 5 ×

10−7. The bubble size was set to lJ = 2.1 AU for particles with bound semi-major axes
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a < 100 AU, and lJ = 3.7 AU for orbits that were either unbound or were bound but

a > 100 AU.

Stopping Conditions

As in the weak scattering simulations, I terminate the integration if the particle rescatters

in the Sun onto an uninteresting orbit or if the particle reaches t = 4.5 Gyr. However,

instead of terminating the integration when r > 5000 AU, I only stop the integration if the

particle becomes unbound again. I do this because some particles that are initially captured

onto bound orbits are on fairly loose orbits (although typically a < 5000 AU).

3.3.3 Computing

Simulations were performed on three Linux beowulf computing clusters at Princeton Univer-

sity. The Physics Department’s Feynman cluster consists of about 250 processors (the exact

number changes as groups in the department add or remove processors) of various clock

speeds and RAM. Most nodes are dual-core with 3.2 GHz clock speeds. The Department of

Astrophysical Sciences has the Hydra cluster, consisting of 92 dual-core nodes. Most nodes

have 3.06 GHz clock speeds. Princeton’s TIGRESS High Performance Computing Center

administers Della, a 512-node cluster. The dual-core nodes have clock speeds of 3.2 GHz.

The DAMA, CDMS, and Large Mass simulations were largely run on Della and Hydra,

while most of the Medium Mass simulation was run on Feynman. Each of these simulations

required approximately 105 CPU-hours. The gravitational capture simulations were run on

all three clusters, for a total of about 1.5 × 105 CPU-hours. About 70% of the CPU cycles

were used for the Regular run, another 25% were devoted to the High Perihelion run. The

High Energy runs used the remainder of the cycles. I used the Della cluster to run the

analysis algorithms described in the following chapter.



Chapter 4

From Simulations to Distribution

Functions

4.1 Distribution Function Estimators

To interpret the simulations, I construct the distribution function of dark matter particles

bound to the solar system as a function of time since the birth of the solar system. As

shown in the Introduction and Section 5.3, the time-dependence of the distribution function

is needed to calculate the neutrino event rates from WIMP capture and annihilation in the

Earth. In contrast, the direct detection rate is sensitive only to the current dark matter

distribution function. In this section, I describe the outputs of the simulations, and how to

estimate the bound distribution function from these data.

As I will discuss below, the most basic output of my simulations is a flux of dark

matter through the Earth (more properly, through a ring of height ±zc and radius 1 AU).

Therefore, I will need some way of translating the flux to a distribution function. To convert

an observed flux at position x and time t, F (x, t), into a distribution function f(x,v, t), I

make the assumption that the timescale of variation in the distribution function is much

larger than the typical dynamical timescale of particles in the solar system (∼ year), and

that both F and f are slowly varying functions of position, so that F (x, t) is approximately

132
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just a function of v and t. I can then adopt the usual argument (cf. Reif, 1965, p. 272)

to relate the flux as a function of velocity to the distribution function. Consider particles

passing outward through a wall of area δA with a unit vector normal to the surface n̂.

For particles with velocity between v and v + δv, one can think of the particles that pass

through the wall in time δt as inhabiting a prism volume of base δA, long side vδt, and

height δtv · n̂. Then the total number of particles with velocity between v and v + δv

passing out through the surface δA per unit time δt is

dF (x, t)

dv
dvδAδt = f(x,v, t)(vδt) · (δAn̂)dv (4.1)

= f(x,v, t)v cos γdvδAδt, (4.2)

where F (x, t) =
∫
Fv(x,v, t)dv and cos γ = v · n̂/v. In the simulations, I consider the flux

of dark matter passing within a height zc of the reference plane at the Earth’s orbit. In this

case, x̂ = n in heliocentric coordinates, and so cos γ is the angle between the velocity vector

and the radial direction. However, I am not interested in the direction of the flux, since

I consider particles passing both ways through this surface, so I estimate the distribution

function from the simulations using

dF (x, t)

dv
dvδAδt = f(x,v, t)v| cos γ|dvδAδt, (4.3)

or

f(x,v, t) =
dF (x, t)/dv

v| cos γ| (4.4)

=
dF (x, t)/dv

|vr|
, (4.5)

since vr = v cos γ is the velocity component in the radial direction with respect to the Sun.

I now demonstrate how fluxes are obtained from the simulations. For each simulation,

I start integrating the orbits of Np particles (see Tables 2.1 and 2.2) at time ti since the

birth of the solar system. Particles scatter into the solar system at a rate Ṅ(ti), where ti

is the time at which the particle first scatters onto a bound orbit in the weak scattering

simulations (i.e., the integral over Eq. 2.29), or when the particle first crosses inward
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through a shell of radius R in the gravitational capture simulations (i.e., the integral over

Eq. (2.41) with limits Emin ≤ E ≤ Emax and J2
min ≤ J2 < J2

max). In principle, Ṅ in either

type of simulation can vary with time if the halo dark matter distribution function varies on

timescales shorter than the age of the solar system, but I assume that the halo distribution

function is static, so that Ṅ(ti) = Ṅ .

In order to estimate the dark matter distribution function at the Earth, I must make

assumptions about the Earth’s orbit. In my analysis, I treat the Earth as moving in a

circular orbit of radius a⊕ = 1 AU about the Sun in the Sun-Jupiter reference plane. To

estimate the flux, each time a particle α crosses 1 AU within a height zc of this reference

plane, I record the time of passage tαβ (here, β labels the particular passage of the particle α

through the Earth’s orbit) since the start of the simulation at ti, position xαβ , and velocity

vαβ . The height zc is chosen to be larger than the radius of the Earth R⊕ in order to improve

statistics, but is small enough (zc � 1 AU) so that my estimate should be unaffected by

gradients in flux as a function of height. Typically, I choose zc . 10−3 AU.

Each particle crossing can be characterized as one point in a six-dimensional phase

space: nαβ , the vector describing the orientation (φ, z) of the particle when it crosses the

cylinder of radius a⊕; the three components of the velocity vαβ ; and tαβ. The vector nαβ

only has two independent coordinates since the radial component of xαβ is fixed. I can

estimate the flux of particles passing passing through a patch of the cylinder at position

n in the cylinder at time t since the birth of the solar system, for which the particles had

initial scattering time in the Sun (weak scattering) or initially entered the solar system

(gravitational capture) at time ti, with velocity between v and v + d3v, as

dF̂

dvdti
=

Np∑

α=1

Nα∑

β=1

Ṅw(λα)δ(6)(n− nαβ ,v − vαβ , t− (ti + tαβ)) (4.6)

/

∫
dλ

Np∑

α=1

w(λ)δ(λ − λα)

for each experiment. There are many aspects of this equation which require explanation.

Here, F̂ denotes that this is an estimator for the true flux F , and F̂ (n, t) is the estimator

for the total flux passing through the cylinder at a position n in the cylinder at time t. The
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total flux can be estimated by integrating Eq. (4.6) over ti and v. Nα is the total num-

ber of times particle α crosses the Earth’s orbit. The function w(λ) weights each particle

according to its initial conditions λ. The weight function describes how much I sample λ

relative to the initial particle distribution at the first scatter (weak scattering simulations)

or when the particles first cross a shell of radius R (gravitational capture simulations). The

denominator of Eq. (4.6) exists to normalize the flux. To demonstrate how this weighting

works, and why it is necessary, I will first discuss the weak simulations in detail, and then

discuss the gravitational capture simulations.

For the weak scattering simulations, the initial distribution of bound particles is de-

scribed by Eq. (2.29). Therefore, the initial conditions for each particle, according to Eq.

(2.29), can be described by λα = (rα, vα,Ωα), were α denotes that these are the initial

coordinates for particle α. In these simulations, I sample the initial distribution of bound

particles strictly according to Eq. (2.29). Thus, w = 1 for each particle α. For those

simulations,

Np∑

α=1

w(λ)δ(λ − λα) =

Np∑

α=1

δ(λ− λα) (4.7)

so that

∫
dλ

Np∑

α=1

w(λ)δ(λ − λα) = Np, (4.8)

where the integral over λ spans the entire range of λα. For the weak scattering simulations,

then, the flux at position n as a function of velocity, observation time, and initial time ti is

dF̂weak

dvdti
=

Ṅ

Np

Np∑

α=1

Nα∑

β=1

δ(6)(n − nαβ ,v − vαβ , t− (ti + tαβ)). (4.9)

For the gravitational capture simulations, I oversample the particle distribution in Eq.

(2.41) by a factor of (J2(Emax, r
max
p )−J2(Emin, r

min
p ))/(J2(E, rmax

p )−J2(E, rmin
p )). Thus,

for these simulations,

w(E) =
(
J2(E, rmax

p ) − J2(E, rmin
p )

)
/
(
J2(Emax, r

max
p ) − J2(Emin, r

min
p )

)
. (4.10)
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In this case, λα = (Eα, J
2
α), and so

Np∑

α=1

w(λ)δ(λ − λα) =

Np∑

α=1

w(E)δ2(E − Eα, J
2 − J2

α), (4.11)

leading to

∫
dλ

Np∑

α=1

w(λ)δ(λ − λα) =

Np∑

α=1

w(Eα). (4.12)

Therefore,

dF̂grav

dvdti
= Ṅ

Np∑

α=1

Nα∑

β=1

w(Eα)δ(6)(n − nαβ ,v − vαβ , t− (ti + tαβ))/

Np∑

α=1

w(Eα), (4.13)

I am interested in the flux arising from particles entering the solar system at all times

prior to the present, not just at a particular time ti. Therefore, to estimate the total flux in

a unit volume of velocity-space, one must integrate Eq. (4.6) over ti, in the range between

the time of the formation of the solar system and the time at which the flux is measured,

dF̂

dv
=

∫ t

0
dti

dF̂

dvdti
(4.14)

=





Ṅ
Np

Np∑

α=1

Nα∑

β=1

δ(5)(n − nαβ ,v − vαβ)Θ(t− tαβ), weak

Ṅ

Np∑

α=1

Nα∑

β=1

w(Eα)δ(5)(n − nαβ,v − vαβ)Θ(t− tαβ)

/

Np∑

α=1

w(Eα). gravitational

In order to get better statistics for the flux through the Earth, I average the flux in Eq.

(4.14) over all positions n in the cylinder. In this case,

∫

cylinder
d2n = δA = 2 × 2πa⊕zc, (4.15)
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the whole area through which I count particle crossings. This implies that the averaged

flux is

dF̂ (n, t)

dv
=

1

δA

∫

cylinder
d2n

dF̂

dv
(4.16)

=





Ṅ

Np

1

δA

Np∑

α=1

Nα∑

β=1

δ3(v − vαβ)Θ(t− tαβ), weak

Ṅ

δA

Np∑

α=1

Nα∑

β=1

w(Eα)δ(3)(v − vαβ)Θ(t− tαβ)

/

Np∑

α=1

w(Eα), gravitational,

(4.17)

This is, in effect, averaging the flux over the Earth’s orbit. I then find the local estimate of

the distribution function by inserting Eq. (4.17) into Eq. (4.5).

To find the distribution function in the frame of the Earth, I make the Galilean trans-

formation u = v − v⊕, where v⊕ is the circular velocity of the Earth about the Sun, to

find

f̂⊕(x,u, t) = f̂(x,u + v⊕, t). (4.18)

4.2 Estimating Distribution Functions in Practice

In practice, there are millions of Earth-orbit crossings for the gravitational capture sim-

ulations, and billions for the weak scatter simulations. In order to present and use the

distribution functions in a manageable form, I use a small zc and bin the distribution func-

tion in velocity-space. For the weak scattering experiments, I set zc = 10R⊕, while for the

gravitational capture simulation, I use the larger value, zc = 10−3 AU ≈ 23.5R⊕. I use the

wider range for the gravitational capture simulations since there are far fewer Earth-orbit

crossings. Using different zc up to zc = 10−3 AU for either type of simulation yields con-

sistent distribution functions, demonstrating the desired result that the estimate for the

distribution function does not depend on the choice of zc.

The most straightforward way of estimating errors in the distribution function and any
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calculations derived from it is to use bootstrap resampling. Bootstrap resampling yields

accurate parameter and error estimation if the original data sample the underlying distri-

bution fairly well. As is demonstrated in the next chapter, I have fairly low statistics for

long-lived Jupiter-crossing particles in the weak scattering simulations, so I am not sam-

pling the underlying distribution of this population very well. However, the simulations

sample the population of long-lived particles enough for one to realize that this population

is there, and may be important, even if the exact distribution of these particles is not very

well known.

To estimate errors in the distribution, for each simulation I perform 500 bootstrap re-

samplings. In each resampling, I select N resampled initial conditions with replacement

from the N original initial conditions. I also determine whether or not each particle rescat-

ters in the Sun before leaving the Sun for the first time on a bound orbit (i.e., I estimate the

fraction of particles that experience multiple scatterings in the Sun). I then calculate all

the relevant quantities using the trajectories and crossings of the new sample as described

in the previous section. I also use these bootstrap resamplings to estimate the direct and

indirect detection rates. For the gravitational capture experiments, I sum over the Regular

and High Perihelion runs, and the analytic distribution function corresponding to the High

Energy run, and add the errors in quadrature since the errors ought to be independent of

each other.

4.3 The Distribution Function in the Earth

In the previous section, I found distribution functions in the absence of the Earth’s gravity.

However, since both direct detectors and neutrino experiments are sensitive to particles

well within the potential well of the Earth, it is necessary to find the mapping between

the velocity coordinates at distances � 1 AU from the Earth but well outside the Earth’s

gravitational field and those at distances ≤ R⊕ from the Earth’s center. Let v = (v, θ, φ)

denote the velocity outside the Earth’s gravitational field in an inertial frame centered on

and moving with the Earth, with the polar axis along the Earth’s direction of motion,
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and the velocity vloc = (vloc, θloc, φloc) be in the Earth’s gravitational field at a position

R = (R, γ, ψ) from the Earth’s center, where vloc is also in an inertial frame centered on

and moving with the Earth. In these coordinates, the angles θ, θloc, and γ are measured

relative to the direction of motion of the Earth with respect to the Sun, and the φ, φloc,

and ψ angles are azimuthal.

Since the particle energy E and angular momentum J in this frame are approximately

conserved near the Earth (even though the system is embedded in the more complex grav-

itational field of the solar system), then the local distribution function floc of dark matter

in the gravitational field of the Earth can be written as

floc(R,vloc) = f(v(vloc,R)). (4.19)

Here, f(v) is the dark matter distribution function in the frame of the Earth but far from

the Earth’s center. Eq. (4.19) is a restatement of Liouville’s theorem. The number of

particles in an interval between (R,vloc) and (R + dR,vloc + dvloc) is

dN = floc(R,vloc)d
3Rd3vloc. (4.20)

If the distribution function f(v) were isotropic, then the mapping between velocity

coordinates would be greatly simplified. In such a situation, the speeds v and vloc are

related through conservation of energy,

E =
1

2
v2 =

1

2
v2
loc(R) + Φ⊕(R), (4.21)

assuming that the Earth’s potential Φ⊕ is spherical. Therefore, the number of dark matter

particles with positions between R and R + dR and speeds between vloc and vloc + dvloc

can be represented as

dNiso = 4πv2
locf(v(R, vloc))d

3Rdvloc. (4.22)

However, in general, the distribution functions resulting from weak and gravitational

capture of particles in the solar system are not isotropic in the frame of the Earth. Thus,

it is necessary to find v in terms of the velocity vloc at position R. The speeds are still



140

related by Eq. (4.21), so that v is a function of only two variables, vloc and R. The angular

coordinates (θ, φ), however, will now be a complicated function of all six local phase space

coordinates, so that the number of particles at (R,vloc is described as

dN = R2v2
locf(v(R, vloc), cos θ(R,vloc), φ(R,vloc))dRd cos γdψdvlocdθlocdφloc. (4.23)

To relate the angular coordinates, I make use of angular momentum conservation as well

as energy conservation, and the fact that the problem reduces to a spherically symmetric

two-body problem. Since orbits are confined to a plane, one can think of R and vloc as a

set of basis vectors for the orbital plane, assuming that the vectors are not parallel. Then,

in general, the position Rfar and velocity v far from the Earth can be described by

Rfar = αR + βvloc, (4.24)

v = γR + δvloc, (4.25)

where the coefficients α, β, γ, and δ only depend on the local coordinates R and vloc,

E, and J . If the Earth’s potential were purely Keplerian, α and β would be the Gauss

f and g functions (see Section 2.5 in Murray & Dermott, 2000), with γ = α̇ and δ = β̇.

The functional form of the coefficients is different in the case of non-Keplerian spherically

symmetric potentials, but the general framework of Eqs. (4.24) and (4.25) holds. Therefore,

Eqs. (4.24) and (4.25) describe the mapping between coordinates in the gravitational field

of the Earth to those outside the Earth’s sphere of influence.
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Results

In this Chapter, I present the results of my simulations, as well as predictions for direct

detection experiments and neutrino telescopes. First, it is important to define some terms

that will be used frequently throughout this chapter. “Heliocentric frame” describes an

inertial frame moving with the Sun. When I discuss “heliocentric speeds,” I will generally

mean particle speeds relative to the Sun, measured at the Earth assuming the Earth has

zero mass. “Geocentric frame” refers to an inertial frame moving with the Earth. If I refer

to a distribution function as being defined in the geocentric frame, it is to be understood

that the velocities are those that I would obtain if the Earth had zero mass. The “free

space” distribution function, Eq. (2.6), is the angle-averaged halo distribution function in

an inertial frame moving with the Sun, outside of the gravitational sphere of influence of

the Sun. The “unbound” distribution function refers to the Liouville transformation of the

free space distribution function to the position of the Earth (Eq. 2.9), including the effects

of the gravitational field of the Sun but not the Earth. In the text, I will make it clear

whether I use this distribution function in the heliocentric or geocentric frame.

In Section 5.1, I present the bound distribution functions from the simulations, and I

describe how the distribution functions depend on the WIMP mass and elastic scattering

cross sections, both spin-independent and spin-dependent. In Section 5.2, I find the contri-

bution of the bound particles to direct detection event rates, and in Section 5.3, I present

141
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neutrino-induced muon event rates from bound WIMPs that annihilate in the Earth.

5.1 Distribution Functions

In this section, I present the bound dark matter distribution functions resulting from my

simulations. First, I will discuss the results of the weak scattering simulations. The in-

terpretation of these results will allow me to generalize the distribution functions to broad

ranges of WIMP mass and both spin-independent and spin-dependent cross sections. Next,

I will examine the results of the gravitational capture simulations, and will discuss the re-

sults in the context of WIMP parameter space, as well as unmodeled effects such as the

stripping of high energy bound orbits due to the Galactic tidal field.

5.1.1 Weak Scatter Simulations

Raw Results

I present the results of my simulations in Figures 5.1 and 5.2. In Figure 5.1, I show the two-

dimensional distribution function f(v, cos θ) =
∫

dφf(v, cos θ, φ) for the CDMS simulation

(Table 2.1) in both (a) heliocentric and (b) geocentric coordinates. The angle between

the velocity vector and the direction of the Earth’s motion is θ, while φ is an azimuthal

angle, with φ = 0 corresponding to the direction of the north ecliptic pole if θ = π/2.

The distribution functions are plotted on a logarithmic scale to highlight structure. I only

show the CDMS simulation results in this Figure because the phase space structure of the

distribution function is virtually the same in all simulations, while the magnitude of the

distribution functions is most easily displayed using the one-dimensional representation in

Figure 5.2.

In Figure 5.2, I present the one-dimensional geocentric distribution functions divided

by the halo WIMP number density nχ (see Section 2.1.2 for the definition) resulting from

all simulations. These distribution functions have already been integrated over angles, and

are normalized such that the bound dark matter density nχ,bound =
∫

dvv2f(v), where
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(a)

(b)

Figure 5.1: Distribution functions divided by nχ in the v − cos θ plane (integrated over φ)
for both (a) heliocentric and (b) geocentric frames. These distribution functions come from
the CDMS simulation, and the units are (km s−1)−3
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Figure 5.2: Geocentric distribution functions from the simulations. (a) Results from all sim-
ulations. (b) The CDMS distribution function relative to theoretical distribution functions
for unbound WIMPs.
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(a) (b)

(c) (d)

Figure 5.3: Locations of various types of orbits in the (a) φ = 0 and (b) φ = π/2 slices
of heliocentric velocity space, and (c) φ = 0 and (d) φ = π/2 slices of geocentric velocity
space.

f(v) =
∫

dΩf(v). I plot the distribution functions in Figure 5.2(a) on a logarithmic scale

in order to highlight the structure of the distribution functions, while I plot the CDMS

(Table 2.1) result on a linear scale in Figure 5.2(b) to compare the simulation results with

theoretical distribution functions. The distribution functions are based on (1 − 4) × 108

passages of particles within a height |z| < 10R⊕ = zc of the Earth’s orbit. The distribution

functions are insensitive to zc, at least in the range 1 . zc . 25R⊕. Error bars are based on

500 bootstrap resamplings of the initial scattered particle distributions for each simulation.

Before I delve into the details of how the distribution functions depend on WIMP pa-

rameters, I will explain the morphology of the phase space density of the bound particles.

First, I will focus on the two-dimensional distribution functions shown in Figure 5.1. The

features in these distribution functions can be explained by the graphs in Figure 5.3. In this

Figure, I show what types of orbits inhabit (v, cos θ) space for fixed φ in both heliocentric
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and geocentric coordinates. For each point in velocity space, I calculate the energy and an-

gular momentum of the orbit. The black region of velocity space represents unbound orbits.

All points in velocity space for which orbits are bound and have perihelia inside the Sun are

marked in purple, while all orbits that are bound and cross Jupiter’s orbit are marked in

orange. The yellow regions correspond to bound orbits that neither enter the Sun nor cross

Jupiter’s path. The φ = π/2 slices corresponds to motions lying in the reference plane of

the solar system, while the φ = 0 slice corresponds to motion lying in a plane defined by the

direction of motion of the Earth and the north ecliptic pole. In the heliocentric plots, there

is a much broader swath of Sun-penetrating orbits in the φ = π/2 slice than the φ = 0 slice

because the angular momenta in the φ = 0 slice are higher (J = a⊕v
√

cos2 θ + sin2 θ cos2 φ)

than in the φ = π/2 slice for a given θ. However, the two slices look similar in the geocentric

frame because the velocities in this frame have to be translated to the heliocentric frame to

find E and J .

Figure 5.3 was computed for a system without planets. Once Jupiter is added, another

type of orbit that may exist is a bound orbit for which Jz is fixed but J can have a range of

values for fixed v. This is a Kozai-type orbit. In this case, Jz = a⊕v cos θ in the heliocentric

frame. In the special case that φ = π/2, J = Jz. Therefore, the parts of (v, cos θ) phase

space in the φ = π/2 plane corresponding to Sun-penetrating orbits also cover orbits with

Jz fixed by the initial scatter in the Sun for other values of φ.

The main result from Figure 5.3 is that the φ = π/2 plots are almost identical to those

in Figure 5.1, with an extra bit in the heliocentric velocity phase space covered by the

distribution function (near v = 37 km s−1 for all cos θ) corresponding to lower-φ slices.

However, there are some small discrepancies between the two sets of plots, for example, in

the heliocentric distribution function at v > 40 km s−1 and cos θ < 0. I will describe those

discrepancies when I describe the related features in Figure 5.2. In general, Figure 5.3 is a

guide to understanding which orbits correspond to which parts of the distribution functions

in Figure 5.1.

Now let me focus on Figure 5.2(a). The four simulation distribution functions generally
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have the same form, and in particular, share three distinct features. The first is a “high

plateau” spanning the speed range 27 < v < 50 km s−1. From Figure 5.3(d), one sees

that there are three types of orbits that correspond to these velocities: Sun-penetrating

particles, particles with fixed Jz, and a subset of Jupiter-crossing particles. However, from

Figure 5.1(b), it is clear that the non-Jupiter-crossing orbits have far higher phase space

density. Therefore, this high plateau represents the contribution from particles that are not

on Jupiter-crossing orbits.

The second feature of the distribution functions in Figure 5.2 is what I will call the “low

plateau.” This is the relatively flat part of the distribution function that extends from ≈ 10

km s−1 to ≈ 70 km s−1. This low plateau corresponds to the part of the two-dimensional

distribution function in Figure 5.1(b) which has been identified by Figure 5.3(d) as repre-

senting Jupiter-crossing orbits. However, one can ask the question, why doesn’t the range

extend down to v = 8.8 km s−1, which is the minimum speed a Jupiter-crossing particle

can reach in the geocentric frame (Figure 5.3(d)), or up to v = 71.9 km s−1, which is the

speed a parabolic particle with its speed upon Earth-crossing exactly anti-aligned with the

Earth’s motion? These velocities are allowed in Figure 5.3(d), but the distribution function

in the range 8.8 < v < 10 km s−1 and 70 < v < 71.9 km s−1 is zero in Figures 5.1(b) and

Figure 5.2.

The reason for truncation in v is a direct result of the narrow range of Jacobi constant

CJ resulting from scatter in the Sun. Here, I describe how to find the minimum vmin and

maximum vmax geocentric speeds allowed by the initial distribution of particles in phase

space. Small geocentric speeds are achieved by exactly aligning a small heliocentric speed

vector with the direction of motion of the Earth. Quantitatively, the heliocentric speed of a

particle at the Earth with semi-major axis a is given by Eq. (1.62), and increasing function

such that v(0.5a⊕) = 0 and v(∞) = v�esc =
√

2v⊕. For Jupiter-crossing orbits, the minimum

heliocentric speed is v(aJ/2), and so the minimum geocentric speed for Jupiter-crossing or-

bits is v(aJ/2) − v� = 8.8 km s−1, such that the speed vectors are parallel. Maximum

geocentric speeds are reached by antialigning nearly parabolic orbits with respect to v⊕.
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These points are highlighted in the endpoints of the Jupiter-crossing two-dimensional geo-

centric distribution function for the CDMS run in Figure 5.1(b). Recalling Chapter 3, the

Jacobi constant is defined as

CJ = −2(E − nJJz), (5.1)

where E is the particle energy and nJ is the mean motion of Jupiter. The Jacobi constant

for Jupiter-crossing particles can be approximately described by

Ci
J ≈ −2Ei =

GM�

ai
, (5.2)

where ai is the initial semi-major axis of the particle, where I have neglected the (small)

contributions to CJ from Jupiter and the small initial value of |Jz|.

First, let me describe how to find the minimum allowable geocentric particle speed.

There are two important points in finding the minimum allowable geocentric speed given

Jacobi constant conservation. First, the statement that a particle must have its heliocen-

tric velocity vector colinear with the direction of the Earth’s motion is equivalent to the

statement that the particle must have a large, positive Jz , and that J ≈ Jz. In addition,

the particle should either be at perihelion or aphelion when it intersects the Earth’s orbit,

such that Jz = a⊕v(amin), where amin is the semi-major axis corresponding to vmin (Eq.

1.62). Therefore, from Eq. (5.1), one sees that in order to find the Jz corresponding to

vmin, ai should be as small as possible while still allowing Jupiter to significantly change

the Jacobi constant. This means that ai = aJ/2 for Cmax
J = GM�/ai, since Jupiter cannot

perturb Jz enough for smaller orbits. This fact is evident in Figure 5.1(a); if Jupiter could

significantly perturb Jz , than the distribution function would spread out into the regions of

Figure 5.3(b) that correspond to orbits that do not penetrate the Sun or have Jz fixed by

the initial scatter.

Secondly, as Jz increases (as it must in order for the velocity vector to align with the

direction of the Earth’s motion), E must increase in order to conserve CJ . Therefore, the

smallest orbit for which a Jupiter-crossing particle can be exactly aligned with the Earth’s

motion is greater than a = aJ/2. Since v(a) increases with a (Eq. 1.62), the minimum geo-
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centric speed for which the bound distribution function at the Earth is non-zero is greater

than v = 8.8 km s−1. Using Jz = a⊕v(amin), One can then solve

Ci
J = CJ(vmin) (5.3)

2GM�

aJ
= −2

(
−GM�

2amin
− nJa⊕v(amin)

)
(5.4)

for amin, and hence find the smallest vs(amin) and geocentric vmin. The semi-major axis

corresponding to vmin is

amin =
1

2

aJ

a⊕

1

1 − (a⊕/aJ)1/2
× a⊕ (5.5)

≈ 4.6 AU, (5.6)

which leads to a minimum speed of vmin ≈ 10 km s−1, consistent with what I find in Figure

5.2.

This set of arguments also explains why the heliocentric distribution function in Figure

5.1(a) is not symmetric about cos θ = 0 for Jupiter-crossing orbits, which it should be if

all Jupiter-crossing orbits in Figure 5.3(b) were represented in the distribution function.

Above v > v(aJ/2) = 38 km s−1, orbits with cos θ > 0 are suppressed due to the initial

distribution of CJ . To find the minimum speed for a given cos θ in the heliocentric frame,

one finds an expression for Jz(cos θ), and then plugs that into Eq. (5.1), and solves for a

assuming ai = aJ/2.

To find the maximum allowed geocentric speed, one must find the maximum heliocentric

speed (alternatively, the largest semi-major axis a) that may be anti-aligned with respect to

the Earth’s motion given the CJ distribution of Jupiter-crossing particles. This is equivalent

to finding a very negative Jz. If the particle speed exactly anti-aligned with respect to the

Earth’s motion when crossing the Earth’s orbit, then Jz = −a⊕v(a), and so

CJ = −2 (−GM�/2a+ nJa⊕v(a)) . (5.7)

As in the case of the minimum geocentric speed, the maximum geocentric speed is achieved

by a particle with initial semi-major axis a = aJ/2. Setting CJ = GM�/(aJ/2) and
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solving Eq. (5.7), one finds that the maximum semi-major axis for which the orbit can be

instantaneously anti-aligned with the direction of the Earth’s motion is

a(vmax) = a⊕
1

2

1

[y − y3] − [2y3 − 2y4 + y6]1/2
(5.8)

≈ 6.4 AU, (5.9)

where I have set y = a⊕/aJ , corresponding to a maximum geocentric speed of

vmax ≈ 70 km s−1, (5.10)

which is consistent with the simulation results.

As with the arguments leading up to an analytic expression for vmin, one can extend

the arguments in this section to explain the structure of the heliocentric two-dimensional

distribution function in Figure 5.1(b). There is a speed-dependent dearth of phase space at

large heliocentric speeds for cos θ < 0. The maximum speed allowed for a given cos θ can be

determined by finding an expression for Jz as a function of cos θ, and then solve Eq. (5.1)

for a, and hence vmax, given ai = aJ/2.

The third common set of features in the one-dimensional geocentric distribution func-

tion in Figure 5.2 are spikes in the low plateau. These spikes result from Jupiter-crossing

or nearly Jupiter-crossing particles that spend long times near mean motion resonances.

While some particles spend a long time near external resonances, most of the power in the

spikes comes from particles that either spend the majority of their lifetimes near the 3 : 1

(a = 2.5 AU) or 2 : 1 (a = 3.27 AU) resonances, or are at or migrating between minor

resonances between the 3 : 1 and 2 : 1 resonances. The minimum semi-major axis for these

spikes corresponds to the 3:1 resonance, a ≈ 2.5 AU. It has been observed, in the context

of comet orbits, that chaotic orbits exterior to the orbit of Jupiter can hover near mean

motion resonances for long periods of time, causing the existence of a long lifetime tail for

comet orbits (Malyshkin & Tremaine, 1999). This phenomenon has been dubbed “reso-

nance sticking.” The particles are not captured into a resonance (in the original Malyshkin

& Tremaine (1999) paper, there is no mechanism for capture), but are on chaotic orbits that

stay near the resonance. While resonance sticking has only been explored in the context
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of nearly parabolic orbits coplanar with Jupiter’s orbital plane, it seems likely that this

mechanism is at work for bound dark matter particles. The error bars on the spikes are

large due to the very low numbers of particles in the resonances. Not all major resonances

have such a long-lived particles stick to them in each simulation, which is why the different

simulations do not have the same spike distributions.

Another aspect of Figure 5.2 is that some of the error bars on the non-resonant distri-

bution function are fairly large. As I will discuss below, these error bars are large because

a sizable fraction of the distribution function comes from a small number (a few hundred)

long-lived particles in each simulation. It is likely that I am not sampling the population

of long-lived particles very densely since I did not a priori know which WIMPs would

dominate the distribution function (and hence, could not design the numerical experiment

to oversample those particles), so some of the error bars are likely to be underestimated.

However, the true height of the high plateau in each simulation is likely to not be too far

off from those shown in Figure 5.2.

It is, in fact, highly unlikely that simulating more particle orbits will make the low

plateau rise above its very low height. The last important fact about the distribution func-

tions from the simulations is that the bound distribution function is much, much lower than

the unbound distribution function for low speeds. Later in this section, I will explore how

the distribution function depends on the WIMP mass and spin-independent cross section,

as well as estimate the dependence on the spin-dependent cross section. The goal of those

explanations will be to find the maximum distribution function consistent with current con-

straints on the WIMP parameter space.

I now examine what types of particle orbits contribute most to the bound distribution

functions in each simulation. First, I will classify particle orbits using information on par-

ticle lifetimes. Then, I will describe the time evolution of the distribution functions and

the local bound dark matter number density. It will then be possible to determine which

types of particle orbits dominate the distribution function. Later, I will describe how the

distribution function depends on the WIMP mass and the WIMP-baryon cross section.
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Figure 5.4: Particle lifetime distributions for the DAMA (solid black), CDMS (red dot-
dashes), Medium Mass (short green dashes), and Large Mass (long blue dashes) simulations.

In Figure 5.4, I present the lifetime distributions for the DAMA (black line), CDMS

(red dot-dashes), Medium Mass (short green dashes) and Large Mass (long blue dashes)

simulations. There are several notable features in this plot. First, and most striking, many

of the bound particles survive for very long times—up to 106−108 yr. Secondly, the lifetime

distribution functions of the CDMS, Medium Mass, and Large Mass runs are very similar,

with only slight shifts in the distributions due to the fact that the scattering probabilities

in the Sun are somewhat dependent on mχ. However, these lifetime distributions are quite

different from that of the DAMA simulation. The main peak in the DAMA simulation is

shifted by a factor of 100 (103 yr instead of 105 yr) and the DAMA simulation is miss-

ing the bump in long-lived (tlife ∼ 107 − 108 yr) particles. The differences in the lifetime

distributions are due almost entirely to the elastic scattering cross section, at least for the

range of WIMP masses I consider. In none of the simulations is there a large population

of particles that survive for times of order the age of the solar system, although there is a
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small population that does (the notch at tSS = 4.5 Gyr in Figure 5.4).

In order to explain these features, it is useful to examine the lifetime distributions as

a function of the initial semi-major axis ai after the first scatter in the Sun, as shown in

Figure 5.5. I plot the histograms in Figure 5.5 on a logarithmic scale to bring out some of

the long-lifetime features. The particles are binned by semi-major axis (0.5 AU ≤ ai < 1

AU; 1 AU ≤ ai < 1.5 AU; 1.5 AU ≤ ai < 2 AU; 2 AU ≤ ai < aJ/2; ai ≥ aJ/2 ).

The first obvious feature is the strong peak at tlife ∼ 103 yr for the DAMA simula-

tion and tlife ∼ 105 yr for the simulations with σSI
p = 10−43 cm2, which I will call the

“rescattering hump.” It encompasses the majority of particles in each simulation. This

feature results from WIMPs that rescatter in the Sun before they are ejected from the solar

system by Jupiter or precess onto orbits that do not intersect the Sun (Kozai cycles). This

rescattering hump is offset between DAMA and the other simulations because the lifetime is

inversely proportional to the scattering probability in the Sun, and so tlife ∝ σ−1
p . There is

one important difference in the morphologies of the rescattering hump between the DAMA

and other simulations. Note in Figure 5.5 that particles on Jupiter-crossing orbits exhibit

a rescattering feature in the DAMA simulation but not in the other simulations. Indeed,

about 23% of Jupiter-crossing particles in the DAMA simulation are rescattered in the Sun,

while < 2% are rescattered in the other simulations. The expanation is that the timescales

on which Jupiter can perturb the perihelia of Jupiter-crossing orbits out of the Sun are

significantly shorter than rescattering timescales for the σSI
p = 10−43 cm2 simulations, but

the two timescales become closer at higher cross sections (σSI
p = 10−41 cm2 for the DAMA

simulation).

A second feature occurs at tlife ∼ 106 yr, which I call the “ejection hump.” This feature

occurs at the same time for each simulation, and arises from Jupiter-crossing orbits. It is

blended with the rescattering hump for the CDMS, Medium Mass and Large Mass simula-

tions, while it is blended with a different feature in the DAMA simulation. As suggested by

the name, the ejection hump results from Jupiter-crossing particles ejected from the solar

system, and its characteristic lifetime is therefore independent of cross section.
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A third feature, called the “quasi-Kozai hump,” is centered at tlife ∼ 106 yr in the

DAMA simulation, and tlife ∼ 108 yr in the other simulations. The feature is seen in the

1.5 AU ≤ ai < 2 AU and 2 AU ≤ ai < aJ/2 bins. The particles in the quasi-Kozai hump

are not on true Kozai cycles. Recall that Kozai cycles are described in a picture where

the Hamiltonian to quadrupole order is time-averaged in such a way as to eliminate short-

period and resonant terms (Section 1.4.1). The averaging means that the Hamiltonian is

independent of two of the angles, and so two action variables are fixed. This translates to

a and Jz =
√
GM�a(1 − e2) cos I being fixed. However, there are many major and minor

resonances with Jupiter between a = 1.5 − 2.6 AU, and therefore, short-term and resonant

parts of the Hamiltonian have a significant effect on particle orbits. Thus, Kozai cycles

provide a poor description of particle orbits in this range of semi-major axis. In the sim-

ulations, particles in the quasi-Kozai hump are observed to alternate between rescattering

hump-type orbits with perihelion well inside the Sun, and orbits that look like Kozai cycles

with the minimum perihelion located in the outskirts (low optical depth) of the Sun (al-

though the perihelia also are outside the Sun a significant part of the time), even though the

particles originate deep within the Sun. Both the semi-major axis and Jz vary with time;

neither is conserved although the combination giving the Jacobi constant CJ is fixed (Eq.

5.1). There are some orbits at the low end of the semi-major axis range 1.5 AU < a ≤ aJ/2

for which a and Jz are conserved and the Kozai description is accurate.

The typical lifetime in the quasi-Kozai hump is inversely proportional to the cross sec-

tion, since particles are eventually removed from the orbits by rescattering in the Sun. The

height of the quasi-Kozai hump relative to the rescattering hump in each relevant semi-

major axis bin is also dependent on the elastic scattering cross section. The rescattering

hump is higher in the DAMA simulation relative to the other simulations because the opti-

cal depth in the Sun is high enough that particles originating deep within the Sun rescatter

before the torque from Jupiter can pull the perihelion towards the surface of the Sun. Per-

haps more interestingly, the median lifetimes of the particles with 1.5 AU ≤ ai < aJ/2 are

quite a bit higher than they would be if particles were either on strictly Kozai orbits or
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rescattering hump orbits. This is due to the fact that there is much larger participation in

these long lifetime orbits relative to particles with significantly lower semi-major axes. Low

semi-major axis orbits (a ∼ 1 AU) can only have long lifetimes if the particle was originally

scattered onto a bound orbit in the outskirts of the Sun, which accounts for only a tiny

fraction of all particle orbits. However, even particles originating deep in the Sun can have

quasi-Kozai orbits unless they rescatter first.

The fourth feature is not obvious in Figure 5.4, but is once the lifetime distribution is

displayed on logarithmic scales in Figure 5.5. This feature is the “Kozai hump.” This hump

is located at about tlife ∼ 108 yr for the DAMA simulation, and near tlife ∼ tSS = 4.5

Gyr for the other simulations. This feature results from particles whose orbital evolution

can be described by Kozai cycles (a, Jz conserved). For the CDMS, Medium Mass, and

Large Mass simulations, the peak is at tSS because that is the point in time at which I

terminate the simulations. Particles on these orbits have ai < 1.5 AU, and originate in

the outer r & 0.5R� in the Sun. They constitute only a very small fraction of all orbits

with ai < 1.5 AU, but dominate the lifetime distribution of particles with lifetimes & 108

yr. The typical lifetime of particles on Kozai cycles depends on the WIMP-nucleon cross

section, so it obvious that Damour & Krauss’s assumption of lifetimes t � tSS is wrong

unless the WIMP-nucleon cross section is very small.

Note also that there is very little variation in the morphology of the lifetime distributions

for the three simulations with σSI
p = 10−43 cm2. Therefore, the shape of the lifetime distri-

bution is determined almost solely by the elastic scattering cross section, not the particle

mass, at least in the range of masses considered in these simulations. It is possible that the

lifetime distribution for a very high or very low mass WIMP would perhaps look different

from those in Figure 5.5, since particles will preferentially scatter onto high energy orbits

(large semi-major axis) if the WIMP mass were high enough. The behavior of bound orbits

as a function of WIMP mass and cross section is discussed further in the “Interpretation”

and “Implications for High Spin-Dependent Cross Sections” sections.

I will next focus on the time evolution of the dark matter distribution function. The
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Figure 5.5: Lifetime distributions as a function of initial semi-major axis for the DAMA
(upper left), CDMS (upper right), Medium Mass (lower left) and Large Mass (lower right)
simulations. The solid black line represents particles with 0.5 AU ≤ ai < 1.0 AU, red dots
those with 1.0 AU ≤ ai < 1.5 AU, short green dashes those with 1.5 AU ≤ ai < 2 AU, long
cyan dashes those with 2 AU ≤ ai < 2.6 AU, and the blue dash-dotted line indicates those
with ai ≥ 2.6 AU = aJ/2.
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evolution of the distribution function as a function of time is closely related to what types of

orbits dominate the distribution function. For example, if the rescattering hump particles

dominated the distribution function, I would expect that the distribution function would

look somewhat like the high plateau in Figure 5.2. This plateau would include Jupiter-

crossing particles on near-radial orbits that rescatter before Jupiter can pull the perihelia

outside of the Sun. The height of the plateau would reach equilibrium on a timescale

of tlife ∝ (σSI
p )−1. In contrast, recall that Damour & Krauss (1999) postulate that the

distribution function is dominated by particles on Kozai cycles for which the rescattering

timescale is longer than the age of the solar system; if this were true in the simulations, then

the height of the high plateau ought to increase linearly as a function of time. Moreover,

the final height of the plateau would be proportional to σSI
P , since this determines the initial

scattering rate onto bound orbits Ṅ⊕.

In Figure 5.6, I show the time evolution of the geocentric speed distributions (using

the same normalizations as in Figure 5.2) for the (a) DAMA and (b) CDMS simulations.

I focus on these two simulations since the results for the Medium Mass and Large Mass

simulations closely resemble those of the CDMS run. In each plot, I show distribution

functions constructed with crossing times tcross < 106 yr (equivalent to the distribution

function 106 yr after the formation of the solar system), tcross < 107 yr, tcross < 108 yr,

tcross < 109 yr, and all crossing times less than the age of the solar system, which I take to

be tSS = 4.5 Gyr. The crossing time tcross is the time since the start of the simulation at

which a particle crosses the Earth’s orbit (see also Section 4.1).

Let me first discuss the similarities, and then the differences between the distribution

function buildups. First, it is clear that the low plateau, due to Jupiter-crossing particles,

is in place by 107 yr; in other words, 10 Myr after the birth of the solar system, the low

plateau has reached equilibrium. The only growth in the low plateau after 10 Myr comes

from particles on resonance-sticking orbits that pump up the spikes. The time evolution of

the low plateau (but not its final equilibrium height) is largely independent of cross section

over two orders of magnitude in WIMP-baryon cross section. The height of the low plateau
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is proportional to the rate at which particles are initially scattered onto Jupiter-crossing

orbits, ṄJ . Since the scattering rate is proportional to the cross section, the height of the low

plateau is proportional to the spin-independent cross section, at least in these simulations.

This is illustrated in Figure 5.7, which shows the part of the distribution function due to

particles with initial semi-major axis ai ≥ aJ/2, for which the distribution functions with

σSI
p = 10−43 cm2 are normalized such that the Ṅ used in Eq. (4.17) to construct the

distribution functions is set to the value of Ṅ for mχ = 60 AMU. I use this particular

normalization so that I can ignore the mass dependence of Ṅ and isolate the dependence

of the low plateau on the cross section. All the features in the DAMA distribution function

are about two orders of magnitude higher than those for the other simulations.

The buildup of the high plateau does depend on the cross section, but not in the way

predicted by Damour & Krauss (1999). The height of the plateau does not grow linearly

with time, nor is the height of the plateau at a given time proportional to the elastic

scattering cross section. The high plateau is mostly fixed by t = 108 yr in the DAMA

simulation. Although the plateau grows as a function of time in the CDMS simulation, it is

not growing linearly with time. These results are not surprising, given that I have argued

that the classical Kozai behavior assumed by Damour & Krauss is seen only in a small

fraction of the bound particles, and that those particles have a lifetime that is small with

respect to the age of the solar system.

In the DAMA simulation, intersections with the Earth’s orbit occurring within 1 Myr

of the first scattering in the Sun contribute a total of ≈ 10% to the total number density

(nbound
χ =

∫
v2f(v)dv), those with crossing times tcross < 10 Myr contribute ≈ 20% of the

total, ≈ 50% have tcross < 108 yr, and 70% of the number density at the Earth is built up

within 1 Gyr (Figure 5.6(a)). The small humps in the tcross < 106 year and tcross < 107 year

distribution functions near the high speed edge of the high plateau come from quasi-Kozai

particles. Almost all of the growth in the distribution function (and number density) from

crossing times tcross > 109 yr is due to resonance-sticking particles. Only one non-Jupiter

crossing particle (out of an initial 8 × 105) survives longer than 1 Gyr. These conclusions
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Figure 5.6: Growth of the distribution functions as a function of time for the (a) DAMA
and (b) CDMS simulations.
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Figure 5.7: Geocentric distribution functions for ai > aJ/2.

are consistent with the lifetime distribution in Figure 5.5, which showed that the median of

the Kozai and quasi-Kozai cycle lifetimes was significantly less than 1 Gyr, and that a few

Jupiter-crossing particles survive to long times. Therefore, the high plateau in the DAMA

simulation has reached equilibrium on timescales shorter than the age of the solar system.

There are several consequences of this finding. First, as I include particles with ever

greater crossing times, the error bars on the distribution function increase, since a relatively

small number of longer-lived particles dominate the total distribution function. For example,

crossings in the time span 10 Myr < tcross < 100 Myr contribute 30% of the current bound

dark matter density at the Earth, even though only about 2,500 particles have lifetimes

tlife > 10 Myr, out of a total of > 106 particle orbits simulated. As demonstrated in Figure

5.5, most of those particles are on Kozai or quasi-Kozai orbits, although there are some

long-lived Jupiter-crossing particles, too. Secondly, even at the cross section used in the

DAMA simulation (σSI
p = 10−41 cm2), which is smaller than some cross sections considered

in Damour & Krauss (1999), the approximation that particles on Kozai cycles have lifetimes
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longer than the solar system is inaccurate. Thus, since the particle lifetimes in the high

plateau are proportional to the cross section, the high plateau for σSI
p > 10−41 cm2 should

be the same as the DAMA high plateau (the shorter lifetime due to the increased cross

section is cancelled by the increased initial scattering rate Ṅ⊕, which is proportional to the

cross section). This approximation should be valid until the elastic scattering cross section

is high enough that the Sun is optically thick to WIMPs.

The time evolution of the distribution function is a bit different in the simulations for

which σSI
p = 10−43 cm2. As in the case of the DAMA simulation, Earth orbit intersections

with tcross < 1 Myr contribute about 10% to the total current number density at the Earth.

The number density from crossings with tcross < 107 yr is 15 − 20% of the total depending

on the simulation, compared with 30 − 40% for tcross < 108 yr, and approximately half for

tcross < 1 Gyr. Just as for the DAMA simulations, this means that the majority of particles

(i.e., the ones in the rescattering hump) contribute very little to the distribution function.

The error bars on the total distribution function are larger than in the DAMA simulation

because fewer (∼ 100− 200) long-lived particles are responsible for half the current number

density of particles (versus ∼ 300 for DAMA). Unlike in the DAMA simulation, a number

of particles have lifetimes longer than the age of the solar system (∼ 100 out of ∼ 105). One

consequence of this is that the distribution functions should be somewhat smaller than the

DAMA distribution function, since the high plateau of the DAMA simulation has reached

its maximum height by the present but the σSI
p = 10−43 cm2 distribution functions are still

growing. The maximum should be reached once all Kozai particles have been rescattered

and then absorbed by the Sun and the distribution function reaches equilibrium.

In the DAMA simulation, about half of the bound dark matter density at the Earth

is built up by t = 108 yr; the other half is due to particles with longer lifetimes. Those

long-lived particles are on Kozai cycles, quasi-Kozai cycles, or stick to resonances. Another

interesting way to examine what types of orbits dominate the distribution function is to

find the number density of particles as a function of initial energy and angular momentum.

In Figure 5.8(a), I plot the number density as a function of initial semi-major axis and
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Figure 5.8: Contributions to the number density of bound particles at the Earth as a
function of both the initial semi-major axis and initial perihelion in the Sun for the (a)
DAMA and (b) CDMS simulations.
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Figure 5.9: Initial semi-major axis distribution of particles with lifetimes tsurv > 1 Gyr. The
top panel is for the Large Mass run, middle for the Medium Mass run, and the bottom panel
shows the results from the CDMS run. The light yellow histogram shows the distribution
of semi-major axes for a < 3 AU. The red line indicates the subset of particles which had
initial perihelia (r < 0.5R�), i.e., the particles that initially scattered deep within the Sun.
The solid vertical lines indicate the major resonances, and the small thick lines indicate all
minor resonances between the 8:1 and 3:1 resonances up to m : n with m = 15.
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initial perihelion. The semi-major axes are binned in such a way that if the distribution

of semi-major axes is described by Eq. (2.34), then there should be equal numbers of

particles in each bin. The perihelia are binned in intervals of 0.1R�. The distribution of

perihelia is sharply peaked near r ∼ 0.15R�. In the plot, one can clearly see the Kozai

cycle contributions (small ai and large rp), as well as a small quasi-Kozai contribution

(1.6 AU < ai < 2.4AU, rp < 0.9). Particles on Jupiter-crossing orbits (ai & 2.6 AU)

make up a non-trivial component of the number density, although many of those bins are

dominated by only a few particles.

Since particles with tlife > 1 Gyr dominate the distribution function for the σSI
p = 10−43

cm2 runs, it is interesting to see which particles constitute this class. Figure 5.9 shows the

initial semi-major axis distribution of these particles up to ai = 3 AU. In each simulation,

there are about ten particles that survive tlife > 1 Gyr that have ai > 3 AU. The long-lived

particles are divided by whether the initial perihelion was within rp < 0.5R� of the center of

the Sun (red histogram) or in the outskirts rp > 0.5R� (yellow histogram). The major mean

motion resonances are marked by long black lines, and minor resonances down to 15 : 1 are

denoted by short black lines. There are several important conclusions stemming from the

plot. First, the vast majority of particles that survive tlife > 1 Gyr had very high initial

perihelia. These particles are on Kozai cycles. In each of the simulations represented in

Figure 5.9, only about 3% of all particles have initial perihelia rp > 0.5R� (only a fraction

of these particles can be on Kozai cycles), and only about 3% of the particles with initial

perihelia in the outskirts of the Sun are on Kozai cycles with lifetimes greater than 1 Gyr.

The percentage of particles on long-lived Kozai cycles decreases as a function of WIMP

mass. Secondly, those few particles that originate deep in the Sun but manage to survive

are in the long lifetime tail of the quasi-Kozai distribution. There are more of these particles

in the Large Mass simulation than the others, but this is probably due to Poisson noise.

There is no physical reason why there should be more long-lived quasi-Kozai particles in

that particular simulation.

These long-lived particles (tlife > 109 yr) only contribute about half of the total number
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density of particles at the Earth in the σSI
p = 10−43 cm2 simulations. To find which types of

particle orbits fill in the other half, I plot the local number density of particles at the present

as a function of initial semi-major axis and perihelion for each simulation, in Figures 5.8(b)

and 5.10. All simulations show a rotated L-shaped structure. This structure, along with

the time evolution of the distribution functions shown in Figure 5.6, demonstrates that the

bound WIMP number density is composed mostly of particles on Kozai cycles (low ai and

high rp) or quasi-Kozai cycles (ai ≈ 2 AU, all perihelia). Therefore, the orbits representing

the two highest lifetime humps in Figures 5.4 and 5.5 dominate the distribution function,

even though the total number of particles in those humps is relatively low. The pure Kozai

cycles are more prominent in the bound WIMP number density even though there are

proportionally fewer Kozai cycling particles than there are particles on quasi-Kozai cycles.

There is a hint of contribution from the low ai, small rp segment of the initial particle

distribution.

Next, I describe how the distribution functions depend on the WIMP mass and spin-

independent WIMP-nucleon cross section. First, I will discuss the mass dependence of the

distribution functions for a fixed spin-independent cross section. There are three effects that

might induce a mass dependence on the cross section. First, the mass can affect the initial

energy and angular momentum distribution of bound WIMPs. As discussed in Section 2.2,

it is increasingly difficult to scatter halo WIMPs onto bound orbits as the WIMP mass

increases. This is because the maximum energy transfer Qmax approaches an asymptote for

large WIMP masses, but the unbound WIMP energy increases since energy E ∝ mχ. Thus,

the minimum scattered particle energy E′ = E − Qmin increases for fixed initial speed

but increasing WIMP mass. Therefore, while the initial distribution of semi-major axes

d log Ṅ/d log a = −1 (this is Eq. 2.34 in Section 2.2) for WIMP masses not too different

from the masses of the nucleons in the Sun, the distribution gets skewed to higher semi-

major axes for high WIMP mass. This is illustrated in Figure 5.11(a), in which I plot

percentage of the total simulated particles in each semi-major axis bin for the CDMS (solid

black, mχ = 60 AMU), Medium Mass (green dots, mχ = 150 AMU), and Large Mass (blue
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Figure 5.10: Contributions to the number density of bound particles at the Earth as a
function of both the initial semi-major axis and initial perihelion in the Sun for the (a)
Medium Mass and (b) Large Mass simulations.



167

dashes, mχ = 500 AMU) simulations. The DAMA particles are not plotted because their

distribution has the same form as the CDMS simulation, since those two simulations have

the same WIMP mass. If the particle distribution were exactly that of Eq. (2.34), then

each bin should have the same number of particles (apart from Poisson noise). It is clear

that the Large Mass distribution is skewed to large semi-major axes relative to the other

simulations, although not radically so.

The angular momentum distribution is also affected by the WIMP mass, as parametrized

by the initial particle perihelion in Figure 5.11(b). As discussed in Section 2.2, the maximum

angular momentum decreases with increasing mχ since high mass particles scattering onto

bound orbits must do so at smaller distances from the center of the Sun. Thus, the Medium

Mass and Large Mass simulations have a deficit of large perihelion particles relative to the

CDMS simulation. The direction of skewing in both energy and angular momentum suggest

that high energy particles will become increasingly common for higher mass WIMPs, and

that there will be fewer particles on Kozai cycles as the WIMP mass increases.

Secondly, the particle mass affects the rescattering probability in the Sun, for two

reasons. First, in Eq. (3.72), the scattering probability along a path is proportional to

dτ/dl ∝
(
1 − e−Qmax/QA

)
, which is a mildly increasing function of WIMP mass mχ (since

Qmax is mass-dependent). The optical depth for the Large Mass simulation (mχ = 500

AMU) for a given path is about 15% higher than for mχ = 60 AMU. However, while high

mass WIMPs have a higher scattering probability than low mass WIMPs, they also rescatter

far more often onto Earth-crossing orbits. Therefore, it is not clear from the outset whether

high mass WIMPs will have longer or shorter lifetimes relative to low mass WIMPs.

The WIMP mass also affects the overall amplitude of the final bound dark matter dis-

tribution function due to the fact that the WIMP mass determines the scattering rate of

halo particles onto bound, Earth-crossing orbits. For high mass WIMPs, the total capture

rate of halo WIMPs in the Sun is (e.g., Gould, 1992)

Ṅtot/nχ ∝ m−1
χ , mχ � mA (5.11)

which can be derived from Eq. (2.29) in the limitmχ � mA using f(r, v) ≈ f(vs = 0) (I give
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(a)

(b)

Figure 5.11: Percentages of particles in each (a) initial semi-major axis bin or (b) initial
perihelion bin. The semi-major axis bins were designed such that, if dṄ⊕/da ∝ a−1, each
bin would have the same percentage of particles (apart from Poisson errors).
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the relation for Ṅtot/nχ, not Ṅtot in order to cancel out the decrease in the scattering rate

simply due to the fact that the number density of particles falls for fixed mass density as the

WIMP mass increases). The function Ṅtot/nχ is plotted in Figure 5.12(a) for the capture

rate due to all species in the Sun (solid red) and for scattering only on hydrogen (blue dots;

calculated in the limit of a cold Sun). The capture rate of particles onto Earth-crossing

orbits is shown in Figure 5.12(b). Note that the capture rate Ṅ⊕/nχ onto Earth-crossing

orbits is an increasing function of WIMP mass until about mχ = 3 TeV (≈ 100 GeV

in the case of only hydrogen scattering). This is due to the fact that low mass WIMPs

may be scattered onto very tight orbits (whose aphelia may be within the Sun), which are

kinematically suppressed for higher mass WIMPs. Even though the total WIMP capture

rate decreases for higher WIMP mass, those WIMPs that are captured are preferentially

scattered onto Earth-crossing orbits. The function Ṅ⊕/nχ turns over when most captured

particles are on Earth-crossing orbits, and then the function follows the familiar Ṅ⊕/nχ ∝

m−1
χ . In Figure 5.12(c), I show the ratio of the Earth-crossing scattering rate to the total

scattering rate. This is a clearly increasing function of mχ, and reaches unity for mχ & 1

TeV in the case of scattering on hydrogen alone.

The consequence of these scattering rates of halo WIMPs in the Sun is that, if the dis-

tribution functions were otherwise independent of WIMP mass, the high mass distribution

functions would be greater than the low mass distribution functions simply due to the pref-

actor in Eq. (4.17). In order to isolate the effects of WIMP mass on the initial distribution

of energy and angular momentum as well as subsequent rescattering, I divide the three

distribution functions from the simulations with σSI
p = 10−43 cm2 in Figure 5.2(a) by Ṅ⊕

and show these functions in Figure 5.13. The low plateaus do not appear to be significantly

different. There are some discrepancies in the spikes, which are due to the very low num-

bers of particles in each simulation that contribute to the spikes. The high plateaus look

relatively consistent with each other, given the large error bars and low sampling of Kozai

cycles. These large error bars are due to the fact that the high plateaus are largely built

up of a very few particles that survive longer than tlife > 1 Gyr and are on Kozai cycles.



170

(a) (b)

(c)

Figure 5.12: In each plot, the red solid line denotes all species in the Sun, and the dotted blue
line represents hydrogen. (a): The capture rate Ṅ of WIMPs by the Sun for σSI

p = 10−43

cm2, divided by the halo number density of WIMPs. The short solid black line gives the
slope Ṅ/nχ ∝ m−1

χ , the limiting slope for mχ � mA for a nuclear species A. (b): The

capture rate Ṅ⊕ to Earth-crossing orbits divided by the halo WIMP number density. (c):
Ṅ/Ṅ⊕.



171

10-8

10-9

10-10

10-11

10-12

10-13

10-14

10-15

 0  10  20  30  40  50  60  70

f(
v)

 d
N

cr
os

s/
dt

(m
χ 

=
 6

0 
A

M
U

 )
/ (

 d
N

cr
os

s/
dt

 n
χ 

)

v [km/s]

CDMS
Med Mass

Large Mass

Figure 5.13: Distribution functions for the three simulations with σSI
p = 10−43 cm2 scaled

by Ṅ⊕.

Given the fairly low statistics of particles that dominate the distribution function, I con-

clude only that the distribution function for a fixed WIMP-baryon scattering cross section

has only a modest, if any, dependence on particle mass for the range of masses I consider

in the simulations. In the “Interpretation” subsection following this current section, I will

comment on any mass dependence I would expect to see if I had a larger sample of particles

that contribute to the distribution function.

Next, I will summarize the effects of changes in the cross section on the low and high

plateaus, as well as the spikes in the distribution function. This discussion will be fairly

brief since I have alluded to most of the main results previously in this section. As noted in

the discussion surrounding Figure 5.7, the height of the low plateau reaches equilibrium on

short (< 10 Myr) timescales, and is approximately proportional to the WIMP cross section,

at least in the range σSI
p = 10−43 − 10−41 cm2. The height is almost certainly proportional

to the cross section for lower cross sections, since in those cases almost no particles will
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be rescattered in the Sun. For higher cross sections, it seems likely that the height of the

low plateau will grow more slowly with cross section since more and more particles will be

rescattered rather than ejected. The height of the low plateau is only a weak function of

cross section for the range of cross sections represented in these simulations. The height of

the DAMA high plateau is about a factor of three higher than that of the other simulations

(if the distribution functions have Ṅ⊕ divided out), since the non-DAMA distribution func-

tions are still growing with time during at present.

The one feature of the distribution functions I have not discussed in the context of

the elastic scattering cross section is the spiked contribution. Spikes are prominent in all

the distribution functions. However, proportionally more particles end up on long-lived

resonance-sticking orbits for the σSI
p = 10−43 cm2 simulations than in the DAMA simula-

tion (see Figure 5.5). The resonance-sticking particles do pass through the Sun, so that the

particle lifetimes depend on the optical depth of the Sun. Many spend quite a bit of time

in the Sun before sticking to a resonance and have perihelia just barely grazing the Sun.

Therefore, I would expect the height of the spikes relative to the low plateau to decrease

with increasing WIMP-nucleon cross section. However, the spike contribution to the total

distribution function may increase because the overall height of the low plateau increases

with increasing cross section.

The last topic I will discuss in this section is what types of orbits dominate the dis-

tribution function as a function of the cross section. This is illustrated in Figures 5.8 and

5.10. The main differences between the contributions to the DAMA number density and

the number density resulting from the simulations with smaller cross section are that: (i)

Jupiter-crossing particles are more important at higher cross sections, and (ii) the quasi-

Kozai contribution increases with decreasing cross section.

Interpretation

There are two more issues I would like to discuss before I present the results of the gravita-

tional capture simulations. First, I would like to explain why the assumptions of Damour
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& Krauss (1999) with respect to Kozai cycles were wrong. In particular, their estimates for

the flux of WIMPs on Earth-crossing orbits were too high by a factor ∼ 102 − 103. Then, I

will discuss predictions for the maximum possible bound dark matter distribution function

given current constraints on the WIMP mass and elastic scattering cross section.

The main reasons that the density of bound WIMPs is much smaller than estimated by

Damour & Krauss is that particles on Kozai cycles have lifetimes before rescattering that

are much less than the age of the solar system. These lifetimes are short for two reasons.

First, the periods of the Kozai cycles are quite small. In the point mass three-body problem,

the period of Kozai oscillations in eccentricity or inclination would be of order (cf. Kiseleva

et al., 1998)

T ∝ P 2
J

P

M�

MJ
. (5.12)

Here, P denotes the orbital period of a particle and PJ represents the orbital period of

Jupiter. For typical particle orbits, T . 105 yr.

The other important timescale is the timescale on which the orbital perihelion is moved

out of the Sun. Since the optical depth in the outskirts of the Sun is extremely low (τ ∼

10−5 for an orbit with rp ≈ 0.7R� in the DAMA simulation, dropping rapidly as the

perihelion approaches the surface), then particles could survive many Kozai cycles before

being rescattered if it only took a few orbital periods for the perihelion to cross the Sun.

However, I will show that it takes many orbital periods for the Jupiter to pull the perihelia

out of the Sun, hence making the optical depth per Kozai cycle much larger than the optical

depth for a single passage through the Sun.

The change in the angular momentum is

dJ

dt
= KJ , (5.13)

where KJ is the torque on the particle orbit by Jupiter. The torque is far higher at the

particle aphelion ra for particles with a < aJ/2 than at any other point in the orbit, and
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can be approximately described as a kick

KJ ∼ r∇ΦJ

∣∣
r=ra

(5.14)

∼ GMJa
2

a3
J

. (5.15)

This form for the torque comes from using the l = 2 term in the spherical harmonic expan-

sion of potential from Jupiter ΦJ (Eq. 3.61). The angular momentum must change by of

order

∆J ∼
√
GM�R� (5.16)

for the perihelion to exit the Sun. Therefore, the total time it takes a particle with a particle

with initial perihelion in the Sun to have its first perihelion outside the Sun is

∆t ∼ ∆J

K
. (5.17)

Using the expressions for KJ and ∆J in Eqs. (5.15) and (5.16), I find

∆t

P
∼ M�

MJ

(
a

R�

)−1/2 (
a

aJ

)−3

(5.18)

∼ 104, for a = 1 AU, (5.19)

where P is the period of the particle. Therefore, a particle passes through the Sun many

times during each Kozai cycle. In the simulations, I usually find that the total optical

depth per Kozai cycle is ∼ 103 times the optical depth at maximum eccentricity. Even if

the optical depth at maximum eccentricity is only 10−5 per orbital period (typical of the

DAMA simulation), the total optical depth per Kozai cycle is ∼ 10−2. It only takes about

100 Kozai cycles for such a particle to rescatter in the Sun. Thus, the result is that the

lifetimes of particles are less than the age of the solar system, and that the estimates of

Damour & Krauss (1999) are wildly optimistic.

One can, however, see how Damour & Krauss (1999) found such high bound particle

number densities given their assumptions. Harking back to Figure 5.6(a), the high plateau is

mostly composed of long lived particles on Kozai cycles in the DAMA simulation. However,
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as per Figure 5.5, the median lifetime for the particles on Kozai cycles in the DAMA simu-

lation is of order tmed
life ∼ 108 yr. The number of times a Kozai-cycling WIMP intersects the

Earth’s orbit is proportional to its lifetime. If the WIMPs on Kozai cycles survived longer

than the age of the solar system in the DAMA simulation (i.e., the assumption of Damour

& Krauss, 1999), then the height of the high plateau ought to be tSS/t
med
life ∼ 50 times higher

than it was in the simulation. Damour & Krauss (1999) found the biggest number densities

for massive WIMPs (mχ of order several hundred GeV), so that by virtue of the fact that

Ṅ⊕/nχ increases as a function of mass, the bound WIMP density for mχ ≈ 500 GeV and

σSI
p = 10−41 cm2 could be several hundred times the WIMP density found in the DAMA

simulation. The DAMA WIMP bound number density was nbound
χ ∼ 10−4nhalo

χ . Therefore,

if the Kozai cycle lifetimes were tlife & 1010 yr, the bound WIMP number density could be

several percent of the halo number density. Since Damour & Krauss (1999) explored cross

sections higher than the DAMA simulation value (constraints on the spin-independent cross

section were orders of magnitude weaker when they wrote their paper than they are today),

one can see how they found bound WIMP number densities comparable to the halo number

density.

So far, I have discussed the results of the simulations and argued how the bound dark

matter distribution function depends on both WIMP mass and spin-independent cross sec-

tion. However, I have not concisely described in which part of the allowed WIMP parameter

space I expect the maximal bound WIMP number density, or what the distribution function

looks like in the allowed region. First, let me return to Figure 1.7 to describe which parts

of WIMP parameter space have not been excluded. The strongest current limits come from

the XENON experiment, with the lowest point in the exclusion curve at mχ ≈ 30 GeV,

σSI
p ≈ 4 × 10−44 cm2. The limits on the spin-independent cross section become substan-

tially weaker for smaller or larger mass WIMPs. The maximum distribution functions for a

given WIMP mass in the allowed parameter space will occur at the boundary of the allowed

and excluded regions. So, one can ask, what do the distribution functions look like along

the exclusion curve? How do those distribution functions compare to those I found in my
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simulations, and where along the curve would one expect to find the maximum signal from

a bound dark matter distribution function?

Let me focus on the minimum point on the exclusion curve first. It is at this point

that I also expect the smallest nχ/n
halo
χ along the curve. The reasons for this are twofold.

First, I showed that even for WIMP-proton cross sections of order σSI
p = 10−43 cm2, the

high plateau is still growing at the present, since many particles on Kozai cycles survive

longer than the age of the solar system. This means that the distribution function has

not yet reached equilibrium. Since the low point in the exclusion curve has a smaller cross

section than in the CDMS-type simulations, the distribution function at that point will

be even further from its maximum. Another way to think about this is that any particles

with lifetimes exceeding the age of the solar system in the CDMS simulation will also have

lifetimes greater than the age of the solar system if the cross section is smaller. Therefore,

those particles will have exactly the same number of crossings of the Earth’s orbit for both

cross sections, even though the rate of scattering onto bound orbits is smaller for the low

point in the XENON exclusion curve than it is for σSI
p = 10−43 cm2. This implies that

the contribution of those particles to the distribution function gets smaller with decreasing

cross section. Those particles that have lifetimes less than the age of the solar system in

the CDMS-type simulations would have about the same contribution to the distribution

function for lower cross sections since, in those cases, the lifetimes (and hence, crossings

with the Earth’s orbit) will increase as (σSI
p )−1, while the capture rate increases as ∝ σSI

p .

The combined effect is that the height of both high and low plateaus should go down with

decreased elastic scattering cross section, although the spikes may become more prominent

with respect to the low plateau as particles are less likely to rescatter before sticking to res-

onances. The second reason why the distribution function should be lowest at the minimum

of the XENON exclusion curve is that Ṅ⊕/nχ decreases with decreasing mχ in this mass

range (Figure 5.12(b)). Overall, the distribution function at the minimum of the exclusion

curve should be a factor of several smaller than the CDMS distribution function, with the

low plateau being even smaller relative to the low plateau of the CDMS simulation.
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Since MSSM models strongly disfavor neutralino masses smaller than 30 GeV, I will

focus on the large mass branch of the exclusion curve to find a maximal value for the dis-

tribution function. As the WIMP mass increases along the exclusion curve, I expect the

bound distribution function to get bigger—to a point, and then it will start decreasing

again. There are two effects that drive the distribution function higher along the exclu-

sion curve. First, the constraint on σSI
p weakens with increasing WIMP mass. Since the

high plateau modestly rises with cross section in the regime where the distribution function

grows with time, and the low plateau height is proportional to the cross section for the

cross sections under consideration, the total distribution function should grow. In addition,

the distribution function should increase for increasing WIMP mass, up to about mχ ≈ 2

TeV by virtue of the growth in Ṅ⊕/nχ (see Figure 5.11(b)). However, as the WIMP mass

grows, it becomes harder to capture halo WIMPs on bound orbits in the outskirts of the

Sun, so fewer particles land on Kozai cycle orbits. Recall that I previously found that

there was little difference in the height of the high plateaus in the CDMS, Medium Mass,

and Large Mass simulations after I divided out Ṅ⊕. If I had a better statistical sample of

the particles that dominate the distribution function, I would expect to see some modest

differences between the CDMS, Medium Mass, and Large Mass simulations. Namely, I

would have expected a decrease in plateau height with increasing WIMP mass. I already

see that the number of long-lived Kozai cycle particles decreases as a function of mass,

but there is quite a bit of particle-to-particle variation in how much a Kozai cycle particle

contributes to the distribution function. The height of high mass high plateaus should be

suppressed relative to low mass high plateaus if Ṅ⊕/nχ were fixed. For masses approaching

mχ ≈ 3 TeV, there is a fierce competition between the suppression of scattering onto Kozai

cycles and increase in Ṅ⊕. The maximum distribution function almost certainly occurs for

a mass < 3 TeV since, all else being equal, Ṅ⊕ flattens and the decreases, regardless of any

Kozai cycle suppression. Given the ratio between the peak of Ṅ⊕ relative to the value at

mχ = 500 GeV, and the only modest rise in the high plateau as a function of cross section

near σSI
p ∼ 10−42 cm2, I expect the maximum distribution function (and bound number
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density) to be at most about 1.5 times the Large Mass simulation quantities. This would

imply a maximum bound number density of nbound
χ ∼ 10−4nhalo

χ , occurring for mχ ∼ 1 TeV

and σSI
p ∼ 10−42 cm2.

In conclusion, even the most optimistic distribution function for bound dark matter par-

ticles yields bound dark matter number densities from elastic, spin-independent scattering

in the Sun that are at least three orders of magnitude smaller than the halo dark matter

number density at the Earth.

Implications for High Spin-Dependent Cross Sections

So far, I have only explored the dark matter distribution function in the case where WIMP-

nucleon scatters in the Sun are dominated by spin-independent, scalar interactions. There

are several reasons to extend this discussion to spin-dependent scattering. First, the

limits on spin-dependent WIMP-proton scattering are much weaker than those on spin-

independent scattering, as illustrated in Figures 5.14(a) and 1.7. As mentioned in Chapter

2, hydrogen is the most abundant nuclear species in the Sun, and it is the only non-trace iso-

tope in the Sun (other than 14N) to have non-zero spin-dependent interactions with WIMPs.

The combination of the weak exclusion limits on the spin-dependent cross section and the

high abundance of hydrogen in the Sun means that it possible that the Sun may have a

much higher optical depth for spin-dependent WIMP interactions than for spin-independent

interactions. Secondly, in large parts of MSSM parameter space, the spin-dependent cross

section is far greater than the spin-independent cross section. In Figure 5.14(b), I show a

scatter plot of σSI
p vs. σSD

p for a scan I performed of a small slice of the MSSM parameter

space. The details of the scan through parameter space are given in Section 5.3. In the Fig-

ure, I only show points for which the cosmological WIMP density is 0.05 < Ωχh
2 < 0.135.

The upper limit is several standard deviations above the best fit WMAP -3 value (Spergel

et al., 2007). The lower limit is set such that it is marginally possible for the local dark

matter density to consist mainly of neutralinos.

I only show models with σSI
p > 8 × 10−44 cm2, only slightly smaller than the cross
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Figure 5.14: (a): Limits on the spin-dependent WIMP-proton cross section from the NAIAD
(dashed) and KIMS (solid) experiments. These are the most stringent current limits. (b):
Spin-dependent vs. spin-independent neutralino-proton cross sections for a selection of
supersymmetric models with 0.05 < Ωχh

2 < 0.135. Only models with σSI
p > 8× 10−44 cm2

are shown.

section used for the CDMS, Medium Mass, and Large Mass simulations. Even though there

are a few models in the plot for which the spin-independent cross section σSD
p & 100σSI

p

and as such is likely to dominate scattering in the Sun (see Section 2.1.1), there are many

more models for which the spin-dependent cross section dominates. Note that there are

many models for which spin-dependent interactions will dominate in the Sun, but spin-

independent cross sections will dominate and be relatively high in the Earth, which is

relevant for capture and annihilation of WIMPs in the Earth (see Section 5.3).

In the description of the spin-independent simulation results, I showed that, for the

range of spin-independent cross sections explored in the simulations, the height of the low

plateau is proportional to the WIMP-nucleon cross section (Figure 5.7), whereas the high

plateau slowly grows as a function of cross section until the plateau reaches equilibrium.

More precisely, the height of the low plateau is proportional to the scattering rate of halo

WIMPs onto bound, Jupiter-crossing orbits. Given how weak the current constraints are

on the spin-dependent cross section, then the low plateau may be able to dominate the
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bound dark matter distribution function, and may even exceed the unbound geocentric

distribution function at low speeds. In Figure 5.15, I show a prediction for the low plateau

for mχ = 500 AMU and σSD
p = 10−36 cm2, neglecting any differences in the initial energy

and angular momentum distribution of particles resulting from hydrogen, not the heavy

elements, being the primary target in the Sun. The cross section is slightly above the

mχ−σSD
p exclusion curve in Figure 5.14(a), and it is chosen to demonstrate an approximate

maximum possible bound distribution function assuming that the plateau height is strictly

proportional to ṄH
⊕ , where the H denotes scattering by hydrogen alone. To estimate the

distribution function for this set of WIMP parameters, I have used the DAMA distribution

function with the spikes removed. I removed the spikes because particles on resonance-

sticking orbits in the DAMA simulation would have rescattered in the Sun before sticking

to a resonance for the high cross section assumed in Figure 5.15. I then rescale the DAMA

low plateau by a factor of Ṅ⊕(60 AMU)/ṄH
⊕ (500 AMU). The large central peak in the

predicted distribution function arises from the nearly radial orbits. This feature is also

noticeable in Figure 5.7 for all simulations. It is clear from Figure 5.15 that in this case,

the Jupiter-crossing particles dominate the bound distribution function, and can swamp the

unbound distribution function at low speeds.

However, such a high distribution function is only possible if the height of the low

plateau scales as the scattering rate of particles onto bound, Jupiter-crossing orbits. There

are some indications within my simulations that the low plateau will grow less rapidly with

cross section than in this simple model. Recall that ≈ 98% of Jupiter-crossing WIMPs

are ejected in the CDMS, Medium Mass, and Large Mass simulations. However, a smaller

fraction (≈ 73%) of WIMPs are ejected in the DAMA simulation because a significant num-

ber of particles rescatter in the Sun before they are ejected. If more and more particles

rescatter in the Sun before they can be ejected from the solar system with increasing elastic

scattering cross section, the height of the low plateau should approach an asymptote. At

even higher cross sections, I would expect the low plateau to drop again, as particles have

a significant probability of multiple scatters in the Sun. The question is, how high can the
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low plateau get?

I attempt to estimate the bound dark matter distribution function for various spin-

dependent cross sections using the DAMA simulation as a starting point. I want to explore

all parts of the distribution function, not just the part originating from Jupiter-crossing

orbits. The basic premise of my approach is that I scale the total optical depth of each

particle in the DAMA simulation by an estimate of the optical depth for a particular spin-

dependent cross section. For particles that are not on Jupiter-crossing orbits, I scale the

particle lifetimes for particles on Earth-crossing orbits by the ratio of the optical depth for

the particular spin-dependent cross section and the DAMA optical depth. For the particles

on Jupiter-crossing orbits, I use the optical depth data from the DAMA simulation to find

the approximate time at which each particle hits a total optical depth τ = 1 for the new

cross section, and declare that point to be the particle lifetime. I then calculate the distri-

bution functions just as I did for the raw simulation results. Before I include any particle

in the distribution function, I do a Monte Carlo simulation of which particles scatter at

least once more after the initial scatter that puts the particles on bound orbits before the

particle exits the Sun the first time. If a particle rescatters before emerging from the Sun,

it is not included in the distribution function.

There are several assumptions in this approach. First, I use the initial distribution of

semi-major axis and eccentricity derived from the DAMA simulation without any kinematic

corrections due to the extreme mass difference between hydrogen atoms and WIMPs. This

has two consequences: I will tend to overestimate the Kozai contribution to the distribu-

tion function since scattering in the outer part of the Sun is suppressed for high mχ, and

underestimate the contribution of Jupiter-crossing particles since the semi-major axis dis-

tribution skews to higher a for large imbalances between the WIMP and target mass. This

last point is illustrated in Figure 5.12(c), in which I plot the ratio of the scattering rate

of halo particles onto Earth-crossing orbits to the total scattering rate onto bound orbits.

As mχ/mH increases, the particle energies are pushed towards E → 0. For hydrogen, the

ratio of scattering rates approaches unity for mχ ∼ 1 TeV. The ratio is smaller by about a
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factor of 5 for Jupiter-crossing particles. Between mχ = 60 AMU and mχ = 500 AMU, the

fraction of Earth-crossing particles that are also Jupiter-crossing increases from 18.9% to

21.5% if the particles scatter only on hydrogen. When I show my estimates of the distribu-

tion functions, it is important to remember that the non-Jupiter-crossing part is an upper

limit. The Jupiter-crossing part may be slightly underestimated, but the errors due to the

other approximations are likely to be greater than the size of the underestimate.

Secondly, I use the cold Sun approximation of Section 2.2 to find scattering rates onto

bound orbits and rescattering probabilities. This is not technically correct, since the ther-

mal speed of hydrogen in the Sun is nontrivial relative to the WIMP speeds. However, the

approximation will be good to a few percent, good enough for my purposes.

Thirdly, I do not recalculate optical depths along each path every particle takes through

the Sun. This would be too time-consuming. Instead, I scale the optical depths of each

particle by the ratio of the scattering rate of E = 0 halo particles with the new cross section

to the scattering rate of E = 0 halo particles in the DAMA simulation. Since bound Earth-

crossing particles do not have energies with respect to the Sun that vary significantly from

E = 0 relative to typical energies of unbound halo particles, using the ratio of the scattering

rates to scale the DAMA optical depths should be a reasonable proxy for finding optical

depths for specific paths through the Sun. However, this approximation does neglect any

differences in the radial distributions of hydrogen and heavier elements in the Sun, as well

as any kinematic effects due to scattering off hydrogen rather than heavier atoms. This

approximation is good enough if the goal of this exercise is to determine, at a somewhat

crude level, the behavior of the low plateau at high cross sections.

I estimate distribution functions for mχ = 60 AMU at σSD
p = 1.3 × 10−39, 10−38, 10−37,

and 10−36 cm2, and then extrapolate the results to other WIMP masses by rescaling the

distribution functions by ṄH
⊕ (mχ). By using this kind of rescaling to other masses, I ignore

any effects that cause the distribution function f(v)/Ṅ to vary with WIMP mass. The cross

section σSD
p = 1.3×10−39 cm2 yields similar same optical depths in the Sun as σSI

p = 10−41

cm2 for mχ = 60 AMU. I used about 50 bootstrap resamplings for each spin-dependent
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Figure 5.16: Estimated geocentric distribution functions for σSD
p = 1.3 × 10−39, 10−38,

10−37, and 10−36 cm2. The estimated distribution function for σSD
p = 1.3 × 10−39 cm2 is

based on the DAMA simulation result, since the optical depth of the Sun for σSI
p = 10−41

cm2 is approximately the same as σSD
p = 1.3 × 10−39 cm2.

cross section to estimate the distribution functions. I extrapolate the distribution function

to mχ = 500 AMU using my simple prescription. The results, without error bars, are shown

in Figure 5.16, displaying f(v)/nχ for each cross section against the geocentric unbound

distribution function.

There are several conclusions to be drawn from this plot. The central part of the distri-

bution function for each cross section (v = 30 − 45 km s−1) is approximately independent

of cross section, which is what one would expect if Kozai cycles dominate this region and

particles have lifetimes of at least one Kozai cycle. This region is relatively unaffected by

multiple scatters because the particles on Kozai cycles originate in a part of the Sun that

still has very low optical depth, even for the highest cross section considered. The spikes

grow for a while and then disappear, a consequence of rescattering in the Sun before the

relevant particles stick to resonances.
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The most striking result of Figure 5.16 is that the low plateau is quite a bit lower than

the naive prediction in Figure 5.15. In fact, the phase space density of bound WIMPs is

quite a bit less than that of unbound particles at the same geocentric speeds, except in

the small region that is inaccessible to unbound particles. It appears that, while the low

plateau does rise for large WIMP-proton cross sections, rescattering in the Sun plays an

integral role in severely reducing Jupiter-crossing particle lifetimes. To examine the low

plateau in more detail, I plot just the a ≥ aJ/2 contribution to the distribution function in

Figure 5.17, both on (a) linear and (b) logarithmic scales. From these plots, it is clear that

while the low plateau is still increasing rapidly with cross section below σSD
p = 10−38 cm2,

the growth is severely retarded at higher cross sections. In fact, the distribution function

for v > 50 km s−1 starts decreasing as a function of cross section for large σSD
p . As the

cross section increases, it becomes harder and harder for WIMPs originating in even the

outskirts of the Sun to have their perihelia perturbed out of the Sun before the particles

rescatter.

The bottom line on particles captured to the solar system by weak scattering in the Sun

is that they are a very small population relative to the halo population, even if the spin-

dependent WIMP-proton elastic scattering cross section is quite large. Improving on the

approximations I used in this section is unlikely to change this conclusion. The largest bound

populations occur in the following circumstances: First, if the WIMP-proton cross section

(either spin-dependent or spin-independent) were small, it would be nice if the WIMP mass

were fairly large to gain the Ṅ⊕ advantage, but not so large as to suppress the Kozai cycles.

If the WIMP-proton cross section were high, which is allowed both experimentally and

theoretically, then it would be advantageous to have a WIMP mass that is high enough to

pump large numbers of particles onto Jupiter-crossing orbits, but not so large as to hit the

drop-off in ṄH
⊕ (see Figure 5.12(b)). However, in none of these cases will the bound WIMP

phase space density be comparable to the unbound phase space density.
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linear scale. (b): Distribution functions plotted on a logarithmic scale to highlight depen-
dence on the cross section.
.
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5.1.2 Gravitational Capture Simulations

Now that I have established that weak scattering in the Sun can only produce a small bound

WIMP population at the Earth, I next determine the size of the bound WIMP distribution

due to gravitational capture. In this section, I present the results of the gravitational capture

simulations. First, I discuss the raw results from the simulation, and then I will address two

potential loss mechanisms for bound particles: scattering in the Sun, and Galactic tides.

Raw Results

The main result of this set of simulations is presented in Figure 5.18. The function in this

Figure is f(v)/nhalo
χ , which is the integral of the distribution function over both angular

directions, as a function of the geocentric speed v. Each distribution function in the Figure

contains contributions from both unbound and bound particles. Distribution functions for

each simulation run were estimated according to the procedures outlined in Chapter 4.

For the Regular run simulation, the distribution was derived from a total of 369084

crossings within zc = 0.001 AU of the Earth’s orbit, a result of integrating ≈ 4.8 × 109

particles with initial conditions distributed as in Eq. (2.60). Of those particles, 322441

particles become bound to the solar system for at least a short time, and 1224 of those

bound orbits go through the Sun at least once. However, not a single particle is weakly

scattered in the Sun. Of the 322441 particles that become bound to the solar system, only

5856 ever cross the Earth’s path (R = 1 AU, |z| ≤ zc), of which 772 also go through the

Sun. Therefore, while only a small fraction of the bound orbits in this simulation contribute

to the distribution function at the Earth, a large fraction of Sun-penetrating particles do.

I will explore this further in the discussion of loss mechanisms below.

In the High Perihelion run (10 AU < rp < 20 AU), there were only 9473 intersections

of bound and unbound particles with the Earth’s orbit. Of the nearly 4 × 109 particle

orbits simulated for the High Perihelion Run, 64559 become temporarily captured in the

solar system, and 54 go through the Sun. As in the Regular run, none of the particles

going through the Sun are weakly scattered onto smaller orbits. The only particles that
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Figure 5.18: Distribution function from the gravitational capture experiments. The distri-
bution function is normalized such that

∫ vmax

0 f(v)v2dv = nsim
χ (v < vmax), where nsim

χ is the
number density of particles in the simulation with v < vmax. The error bars are estimated
using bootstrap resampling of the original particle distribution.

contribute to the distribution function at the Earth are those that do intersect the Sun; the

intersection of 51 of 54 bound, Sun-going orbits with the Earth’s orbit account for all 9473

data points for the distribution function.

The distribution function for the High Energy run is based on 211413 intersections

with the Earth’s orbit. Since the energies of particles in this run are so large that Jupiter

cannot capture them, this distribution function can also be determined analytically using

Liouville’s theorem by assuming that Jupiter does not significantly alter the distribution

function. Therefore, comparing the High Energy distribution function with the analytically

derived distribution function provides a good check on my analysis methods. In Figure

5.19, I present both distribution functions. The simulation-derived distribution function is

well-fit by the analytic distribution function, which is a sign that the analysis pipeline is

functioning properly.

There are several questions to ask about the distribution function. First, have I sampled

enough orbits for the distribution function derived from the simulations to obtain a good
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Figure 5.19: The distribution function from the High Energy run compared with that which
is analytically derived using Liouville’s theorem.

estimate of the true distribution function? In other words, can the error bars generated

by bootstrap resampling be trusted? The answer for this is a qualified yes. I think the

general shape of the distribution functions from each simulation is correct. However, the

Regular Run distribution function is based on only about 5900 particle orbits, and the High

Perihelion Run is derived using only 51 orbits. It is possible that parts of the distribution

function are either undersampled or oversampled. In particular, the low number of orbits

means that I could have zero contribution from very rare orbits that nevertheless contribute

significantly to the distribution function. The Regular Run simulation appears to be fairly

well sampled, but the High Perihelion distribution function could use more orbits that

sample v > 30 km s−1. Even if I were to simulate more orbits, I do not think that the shape

of the distribution functions would change qualitatively. To make believable comparisons

with theoretical models, it would be best to simulate more orbits.

In Figure 5.20, I show the geocentric distribution function from the simulations along

with some theoretical curves. In this case, I determine the full distribution function at the
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Figure 5.20: The total distribution function from the gravitational capture simulations
(using the theoretical High Energy curve) compared against several theoretical distribution
functions.

Earth with v ≤ (
√

2 + 1)v⊕ using the simulated Regular and High Perihelion distribution

functions but with the analytic High Energy distribution function. The distribution func-

tions from each run can be summed because, as discussed in Section 2.3, the simulation runs

sample separate pieces of the halo distribution function. This total distribution function

describes the entire geocentric distribution function, including both bound and unbound

orbits, for v < (
√

2 + 1)v⊕. As shown in Figure 5.20, the simulation distribution function

is clearly distinguishable from the analytic unbound halo distribution function (blue dots;

this is Eq. 2.3 transformed to the geocentric frame).

One can compare the distribution function from these simulations with previous predic-

tions for the distribution function in the case that particles are captured in a solar system in

which Jupiter is the only planet. Lundberg & Edsjö (2004) claim that their solution to the

differential equations for gravitational capture indicates that the distribution function of

particles in a solar system containing only Jupiter is that described in Gould (1991), which



191

is approximated as the “conservative scenario” in Gould & Alam (2001). The “conservative

scenario” is defined by a distribution function at the position of the Earth given by the

free space distribution function (Eq. 2.6) for all unbound and Jupiter-crossing orbits (i.e.,

all orbits with a ≥ aJ/2), and is set to zero for all other velocities. In other words, the

“conservative” distribution function at the Earth but in heliocentric coordinates is,

f(a⊕, vs) =
1

2(2π)3/2

nχ

σv�vs

[
e−(vs−v�)2/2σ2 − e−(vs+v�)2/2σ2

]
, (5.20)

vs ≤
[
2(1 − (aJ/a⊕)−1)

]1/2
v⊕.

The distribution function in the geocentric frame is attained by making a Galilean trans-

formation. This is the distribution function labeled “Gould and Alam” in Figure 5.20.

The theory behind this distribution function is as follows. Gould (1991) noted that,

when a particle passes near or in a planet, its speed does not change with respect to the

planet as a result of the encounter, but its direction does. As discussed in Section 2.3, such

changes in direction in the frame of the planet translate to changes in energy of the particle

with respect to the Sun. In the absence of other forces or loss mechanisms, when the particle

encounters the planet again, it should do so in the same direction (up to a change in az-

imuth) as the direction from the last gravitational encounter. Gould found a time-averaged

rate of change in the square of direction change in the limit of small deflections (see Eq. 2.1

and 2.2 in Gould, 1991). He describes the changes in direction as “diffusion,” and states

that such diffusion should fill accessible bound orbits to the same density as unbound orbits

once equilibrium between bound and unbound states is achieved (i.e., on timescales of the

time-angled rate of change in direction). The timescale for Jupiter to fill Jupiter-crossing

bound orbits is ∼ Myr, so on times longer than that, Gould (1991) predicted that Eq.

(5.20) ought to describe the distribution function of particles at the Earth in a solar system

containing only Jupiter, and neglecting any sort of loss mechanism such as scattering in the

Sun or gravitational scattering by Galactic tides.

From Figure 5.20, one can see that the distribution function from the simulations is

fairly well fit by the conservative distribution function at low speeds, and is between the

unbound and conservative distribution functions at higher speeds. In the low speed section
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(a) (b)

Figure 5.21: (a) Particle lifetime distribution for the Regular run (solid black) and the High
Perihelion run (red dots). (b) Distribution of times at which particles cross the Earth’s
orbit.

of the distribution function, neighboring error bars are of similar size, suggesting (perhaps)

that the true distribution function is fairly well sampled by the simulations. For the larger

speeds, it is unclear how well the conservative distribution function fits to either the true

distribution function or the simulation distribution function, given that the distribution

function may be undersampled in the simulation. However, it seems likely that the conser-

vative distribution function is at least an approximate fit to the true distribution function

at the Earth for my model solar system and assumed halo distribution function. This ought

to be true unless there are rare (but not too rare) orbits that are bound for a very long

time and have a high frequency of intersecting the Earth’s orbit. I will discuss this point in

more detail in the conclusion of this thesis.

One of the assumptions I made prior to running the simulations was that it would be

acceptable to use an angle-averaged distribution function for both this and the last set of

simulations. Recalling Section 2.1.2, it was argued that the angle-average was similar to a

time average over the normal of the plane of the solar system with respect to the Galactic

pole. The period of the Sun’s orbit about the Galactic Center is t� ≈ 200 Myr. If the life-
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time of particles in the solar system is long with respect to t�, then using a time-averaged

distribution function for the initial conditions would be an appropriate approximation.

For the gravitationally captured particles, the time averaging turns out not to be justi-

fied. In Figure 5.21(a), I present the lifetimes of the bound particles in both the Regular

and High Perihelion runs, as well as the distribution of times at which the (bound and

unbound) particles cross the Earth’s orbit. The solid black lines represent Regular run

distributions, while the dotted red lines denote those of the High Perihelion run. For the

Regular run, the median lifetime of a gravitationally bound particle in the solar system is

a little more than 1 Myr. The corresponding time is about 5 Myr in the High Perihelion

Run. The high lifetime tail of the distributions is due to very large orbits and “resonance-

sticking” outside Jupiter’s orbit, orbits which may last a long time in the solar system but

do not contribute to the distribution function of dark matter particles at the Earth. This

fact becomes clear when one examines the distribution of crossing times in Figure 5.21(b).

The short-time peak in the crossing time distribution represents unbound particles on their

only pass through the solar system and crossings of short-lived bound particles. Although

the bin size is 104 yr, the crossing times of the particles in the short-time peak is actually

quite a bit smaller than 104 yr. In the crossing time distribution plot, it is clear that the

distribution function is completely set on timescales shorter than the Sun’s orbital period

about the Galactic Center.

The consequence of this fact is that, while the results and interpretation here are quali-

tatively correct, to make a precise prediction of the distribution function of gravitationally

bound particles in the solar system, one should use the original, anisotropic halo distribu-

tion function (Eq. 2.3) to generate initial conditions for particle orbits as a function of

time.

The main results of these simulations are twofold. First, the phase space density of

unbound orbits is still quite a bit higher than that of the bound orbits above geocentric

speeds v & 15 km s−1. I expect that this will be true even if anisotropic initial conditions

are used, and once better statistics of bound orbits are obtained. Secondly, the phase space
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Figure 5.22: Comparison of the geocentric bound distribution functions for mχ = 500 AMU.
The dashed black line indicates the phase space density of unbound orbits. The blue line
shows the results from the gravitational capture simulations, the red line is the Large Mass
distribution function (σSI

p = 10−43 cm2 and σSD
p = 0, and the green dashed line indicates

the estimated distribution function for the maximal value of σSD
p = 10−36 cm2.

density of particles bound to the solar system by gravitationally scattering on Jupiter is

generally quite a bit higher than that of particles bound by elastic scattering in the Sun for

geocentric speeds v < 30 km s−1 and v > 50 km s−1. This is demonstrated in Figure 5.22,

in which I show the results of the gravitational capture simulation as well as distribution

functions from the weak scattering simulations. If the spin-dependent cross section is high,

then the bound distribution function for the elastically scattered particles may be higher

than the gravitationally captured particles for 30 km s−1 < v < 50 km s−1, but will be

smaller or of approximately the same size as the gravitational capture distribution function

in the case that spin-independent scattering dominates in the Sun.
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Loss Mechanisms

There are two means by which particles may be lost to the solar system other than gravi-

tational scatter by planets:

1. Weak scatter in the Sun (or, very rarely, the planets). Even though no bound orbits

were scattered in the Sun in any of the gravitational capture simulations, it is impor-

tant to determine how the distribution function changes as a function of the strength

of the dark matter-baryon interaction.

2. Interactions with external gravitational fields. Galactic tides and encounters with

distant stars become important for bound orbits with a & 1000 AU. Such Galactic

gravitational fields are thought to be important in scattering Oort cloud comets into

the solar system (Heisler & Tremaine, 1986; Duncan et al., 1987). In addition, if

comets originate in the outer solar system (near the outer planets), then Galactic

tidal fields can help move the orbital perihelia outside the orbits of the planets. It is

important to understand how external fields will affect the distribution and lifetimes

of WIMPs.

In order to estimate the effect of the WIMP-nucleon cross section on the bound distri-

bution function, I recorded the integrated optical depth of each particle’s orbit through the

solar system. Very few of the bound orbits (1224/322441) ever go through the Sun, but

the optical depths τ of those that do are represented in Figure 5.23. The median optical

depth of Sun-crossing particles in the Regular run is τmed ≈ 10−5, and τmed ≈ 2 × 10−4

in the High Perihelion run. I have not weighted the distribution according to Eq. (4.10),

although, to good approximation, the initial energies of most of the orbits are small enough

that the weights are the same. Figure 5.23 illustrates that very few particles have even a

moderately high total optical depth if mχ = 500 AMU, σSI
p = 10−43 cm2, and σSD

p = 0.

The WIMP-nucleon cross section (and hence, Solar opacity) would need to be much, much

higher in order for scattering in the Sun to rescatter any of the particles that pass through

the Sun.
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Figure 5.23: The distribution of total optical depth per particle of those particles that enter
the Sun. The solid red line indicates the distribution for the Regular simulation, while the
dashed black line indicates that of the High Perihelion run.
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Figure 5.24: The distribution function of bound particles from the gravitational capture
simulations. The solid red line indicates the raw distribution function from the simulations
minus the unbound halo distribution function. The long-dashed green line with data points
indicates the distribution function of particles before they are lost to the solar system by
Galactic tides. The short-dashed blue line and data points indicate the distribution function
of particles that never enter the Sun.
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To find the maximum effect of scattering in the Sun, I find the bound distribution

function of only those particles that never enter the Sun. This is represented by the crosses

with the dotted blue error bars in Figure 5.24. This comparison plot shows the bound

part of the conservative distribution function, and the bound distribution function from

the simulations. Even though the Sun-crossing particles contribute significantly to the

distribution function, the majority of the bound particle distribution function is built up by

particles that never enter the Sun. Therefore, at least at the Earth’s orbit, the distribution

function of particles gravitationally bound to the solar system depends only weakly on the

strength or type of the WIMP-baryon interaction.

The effects of the external gravitational fields are independent of the WIMP mass and

the WIMP-nucleon cross section. In order to estimate the consequences of these these

forces, I assume that Galactic tides pull the perihelia of all orbits crossing outward through

1000 AU out of the solar system. In Figure 5.24, I show the bound dark matter distribution

function, arising from particle-Earth orbit intersections that occur before the particle passes

outward through 1000 AU. The density of particles is noticeably lower but by less than a

factor of two. I conclude that for trajectories relevant to the WIMP distribution function

along the Earth’s orbit, the initial gravitational interaction with Jupiter puts many particles

on orbits small enough to be relatively unaffected by Galactic tides, or other gravitational

forces originating outside of the solar system.

Tides may remove more particles from the solar system than weak scattering in the

Sun, especially for at low-speed end of the geocentric dark matter distribution function.

Current limits on either the spin-dependent and spin-independent cross sections are strong

enough to rule out significant loss in the Sun for gravitationally bound particles. However,

the error bars on the bound distribution functions are quite large, and I have not actually

included tides in the simulation but have only crudely estimated their effects. Therefore,

it is not clear how much tides will affect the distribution functions, nor is certain which

loss mechanism would have the greater effect. Future more sophisticated studies of bound

WIMPs should include a proper treatment of Galactic tides and tidal fields from passing
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stars.

5.1.3 Summary of the Gravitationally Captured WIMPs

Let me summarize the gravitational capture results by placing the results in the context

of the original goals of these simulations. In the Introduction, I claimed that previous at-

tempts to find the WIMP distribution function at the Earth resulting from gravitational

capture had serious flaws. They did not account for any possible resonant or short duration

effects, and treatment (or lack thereof) of weak scattering in the Sun was crude at best. In

my simulations, I have a realistic treatment of scattering in the Sun and all gravitational

scattering due to the dominant planet, Jupiter.

I find that the distribution function of particles bound by gravitational scatter is ap-

proximately described by the conservative distribution function of Gould & Alam (2001).

However, there are several caveats to this statement. First, of the nearly 1010 orbits I

simulate that could be captured in the solar system (i.e., the particles in the Regular and

High Perihelion runs), only ∼ 3 × 105 spend any time bound to the solar system, and only

about 6× 103 of those bound particles contribute to the distribution function at the Earth.

For such a relatively small number of contributing particles, it is possible that I miss rare

particles that spend a long time bouncing around the solar system. While I have found no

shortage of resonance sticking particles, most of those resonances are exterior to Jupiter

and never go near the Earth. There could be a few spikes in the distribution function, but

one would need a larger sample of particles to resolve them. It is therefore plausible, but

not certain, that Gould & Alam’s conservative distribution function will continue to be a

reasonable approximation for the bound WIMP population, at least for geocentric speeds

v < 30 km s−1. The question is, just how important is the long-lifetime tail to the distri-

bution functions?

I have also investigated the effects of two loss mechanisms: scattering in the Sun and

removal by external gravitational interactions. I have demonstrated that the Sun will re-

move very few particles from the distribution function, even for high WIMP-nucleon cross
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sections. However, it is possible that Galactic tides and other external gravitational forces

may significantly reduce the bound distribution function, by up to a factor of two. This case

needs a more careful treatment than my crude removal scheme described in the previous

section.

It is also important to consider which mechanism for binding particles to the solar sys-

tem, elastic scattering in the Sun or gravitational scattering by Jupiter, will dominate the

bound distribution function. The bound distribution functions are compared with the un-

bound distribution function in Figure 5.22. Even if the gravitational bound distribution

function were smaller by a factor of two due to scattering in the Sun and removal by Galac-

tic tides, the bound distribution function due to gravitational capture will still be larger

at small (v . 30 km s−1) and large (v & 50 km s−1) geocentric speeds. At intermediate

speeds, the relative contribution will depend on the optical depth in the Sun.

5.2 Impact on Direct Detection Experiments

Direct detection experiments currently place the tightest constraints on the spin-independ-

ent WIMP-nucleon elastic scattering cross section, and are starting to make inroads into

spin-dependent WIMP parameter space. The next generation of experiments, with fiducial

masses approaching one ton, should be sensitive to event rates of < 10−4 kg−1 day−1, and to

spin-independent WIMP-proton cross sections down to ∼ 10−46 cm2. If these experiments

do not find a statistically significant signal for WIMP-nucleon scattering, they will have

excluded a large set of SUSY parameter space, and will start hacking through the space

of the simplest Kaluza-Klein models. More optimistically, if WIMP-nucleon scattering is

observed, not only can the WIMP-nucleon spin-independent scattering cross section be

determined (rather, ρχσ
SI
p , the cross section times the local halo WIMP density), but the

shape of the differential energy spectrum of events can yield constraints on the WIMP mass,

assuming that the various astronomical parameters are well-understood and that the halo

dark matter distribution function is not wildly different from smooth and approximately

Maxwellian (see the discussion in Section 1.3.2 and Figure 1.15). Particles bound to the
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Figure 5.25: Direct detection event rates as a function of the energy transfer Q for a WIMP
of mass 500 AMUs and interaction cross section σSI

p = 10−43 cm2 with argon (solid red line),
germanium (blue dots), and xenon (green dashed) as targets. The upper curves indicate
the event rate for the full halo distribution function under the gravitational influence of
the Sun. The lower curves indicate the contribution to the total event rate from only the
unbound orbits in the halo distribution function with v < (

√
2 + 1)v⊕ in the frame of the

Earth, the range of speeds accessible to bound particles.

solar system will contribute to the direct detection rate if the experimental energy threshold

is small enough. In this section, I will determine the contribution of the bound distribution

function to the direct detection rate.

I focus on direct detection rates for spin-independent interactions, since most of the

progress in constraining WIMP parameter space with upcoming experiments will be in the

spin-independent sector. However, the results of this section can be applied qualitatively to

spin-dependent interactions as well. Any arguments concerning kinematics are completely

transferable. Any arguments concerning form factor suppression should apply to spin-

dependent interactions as well, although one should use the spin-dependent form factor

(Appendix B.2) instead of the spin-independent one for quantitative results.
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First, it is instructive to examine the differential event rate dR/dQ due to unbound

halo particles interacting with various target nuclei. In the class of experiments with one

ton target mass, the three most common choices for targets are argon (40Ar), germanium

(both 73Ge, which can also experience spin-dependent WIMP-neutron interactions, and

76Ge), and xenon (131Xe). Argon is used by several groups because it is cheap (see the unit

prices in Gaitskell, 2007), and liquid noble gas experiments are easily scalable. However,

the threshold for these experiments is usually quite large, Qth ≈ 40 keV, in order to dis-

tinguish WIMP from background events. Liquid xenon is used due to its relatively high

spin-independent cross section with WIMPs. Xenon-based technology is also quite scalable.

The analysis threshold for the initial XENON10 analysis was Qth = 4.5 keV (Angle et al.,

2007). Germanium is being used for the SuperCDMS experiment, since the cryogenic de-

tection techniques relevant to such experiments are quite advanced. In order to reduce the

backgrounds in the analysis window, the low energy limit for the analysis window is taken

to be Qth ≈ 10 keV in current germanium-based experiments.

In Figure 5.25, the event rates dR/dQ are indicated for a WIMP mass of mχ = 500

AMU for both the angle-averaged full halo distribution function (Eq. 2.9) in an inertial

frame moving with the Earth (upper lines) and for only those particles with a geocentric

speed of v < (
√

2 + 1)v⊕, the geocentric speed range for which orbits bound to the Sun are

possible (lower lines). I show the event rates for the low speed particles for the following

reason. Most direct detection experiments are not sensitive to the direction of the incoming

WIMP. Even though bound WIMPs inhabit a different part of velocity space than unbound

WIMPs (see Figure 5.3), they overlap in speed in the geocentric frame. Therefore, the

signal from WIMPs on low geocentric speeds will overlap. The rate dR/dQ calculated with

unbound WIMPs with low geocentric speeds shows the range of transfer energies that are

also accessible to bound WIMPs. To calculate actual event rates, one should use the aniso-

tropic halo distribution function, Eq. (2.3), translated to the gravitational influence of the

Sun and an inertial frame moving with the Earth, but I use the angle-averaged distribution

function for illustrative purposes.
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Even though I calculate these event rates using the isotropized halo distribution func-

tion, the geocentric halo distribution function is anisotropic due to the motion of the Earth.

Therefore, to translate the distribution function outside the sphere of influence of the Earth

to the corresponding distribution function at the detector, one should use the mapping

technique in Section 4.3, averaged over the detector’s daily motion about the Earth’s rota-

tion axis. However, using the mapping θloc = θ, φloc = φ produces errors in dR/dQ of at

most a few percent for the low speed event rate, and < 0.1% for the event rates calculated

using the full halo distribution function. Therefore, I use this simplification in calculating

dR/dQ.

There are two main features to the event rate curves for the full distribution function.

First, the event rate is higher for more massive target nuclei and lower energies. This is

simply a result of the σSI
A ∝ A2µ2

A dependence of the spin-independent cross section with

nuclear mass mA. Secondly, the event rates for higher mass nuclei drop off rapidly as a

function of energy transfer Q due to form-factor suppression. In the case of spin-dependent

event rates, the height of the curve will depend on the spin properties of the target nucleus,

as will the slope of dR/dQ.

The direct detection rate for particles with v < (
√

2 + 1)v⊕ in the frame of the Earth is

much lower than that for all particles. In fact, for a given energy transfer, the contribution

of low speed halo WIMPs to the direct detection rate never exceeds 4% for the distribution

function described in Eq. (2.9), with the maximum occuring at zero energy transfer. This

is because a particle must have a minimum speed of

vmin = (mAQ/2µ
2
A)1/2 (5.21)

to transfer energy Q from the WIMP to the nucleus. In the expression for the differential

event rate dR/dQ in Eq. (1.19), the integrand peaks at a much higher speed than v =

(
√

2 + 1)v⊕, so most of the direct detection signal comes from higher speed particles. One

can also use Eq. (5.21) to find the maximum allowable Qmax for a given particle speed v

with respect to the detector, in the frame and in the gravitational influence of the Earth. In

Figure 5.25, it is clear that for a high WIMP mass, the differential event rate with a xenon
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target extends to much higher energy transfer than either of the other targets. Given current

experimental designs and understanding of backgrounds, only the xenon-based experiments

have thresholds low enough to include bound WIMPs in their analysis window if WIMP

mass ismχ & 200 AMU. The argon-based experiments are really sensitive only to high speed

WIMPs, while germanium-based experiments may only see bound WIMPs if the analysis

threshold is dropped below Eth ≈ 8 keV.

For the spin-dependent case, the maximum Q for a given target mass and WIMP mass

will not change. However, the shapes of the differential event rate curves may differ from

the spin-independent curves. The ratio of the v < (
√

2 + 1)v⊕ differential event rate to the

full differential event rate should be the same as in the case of spin-independent interactions

since the ratio depends on the form (or cutoff) of the distribution function, not the form

factor.

Still, it is important to understand the event rates of low energy transfer scatters in

case the analysis windows of future experiments can be expanded to low energy transfer. In

Figure 5.26, I present the direct detection event rates from the weak scattering simulations.

The top set of three lines, as before, represent the event rates for three different target

isotopes for the all the unbound halo particles. The middle set of three lines (with the label

“halo v < (21/2 + 1)v⊕”) represent unbound halo particles that have geocentric speeds in

the same range as those of bound particles. The lowest set of three lines, with the data

points and error bars and marked “simulation”, represent the event rates derived from the

simulations, with the error bars determined by bootstrap resampling. The bound particles

contribute, at maximum, a few parts in 104 to dR/dQ, with the maximum contribution

occurring for Q = 0. The bound particles contribute a maximum of about 1% to the event

rate of particles with geocentric speeds of v < (
√

2 + 1)v⊕. As indicated by Eq. (5.21), the

event rate dR/dQ extends farther in Q for high mass WIMPs and high mass targets than

for low mass WIMPs and target atoms, but the contributions to the total differential event

rate are negligible at high Q.

To find an upper bound on the direct detection rate from particles captured to the solar
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Large MassMedium Mass

DAMA CDMS

Figure 5.26: Differential direct detection rates for each weak scattering simulation. As in
Figure 5.25, solid red lines indicate detection rates for a target of argon, dotted blue lines
assume germanium as a target, and dashed green lines indicate rates for xenon.
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system by weak scattering in the Sun, I find dR/dQ with σSI
p = 10−43 cm2 in the case

that the spin-dependent cross section dominates the capture rate in the Sun. In Figure

5.27(a), I show dR/dQ for a mχ = 500 AMU WIMP and a 131Xe target. The uppermost

line represents the event rate for all unbound particles, the red dotted line represents the

event rate from unbound particles with v < (
√

2 + 1)v⊕, the magenta long-dashed line

represents the estimate for bound particles if σSD
p cm2 = 10−36 cm2, the black dot-dashed

line represents σSD
p = 1.3 × 10−39 cm2 (i.e., when the Sun has the same opacity as for

the DAMA simulation, but with the opacity due to spin-dependent scattering), and the

cyan short-dashed line shows the event rate from the Large Mass simulation (σSI
p = 10−43

cm2, σSD
p = 0). I choose the two spin-dependent cases because they bracket the rates for

spin-dependent cross sections in the range 10−36 < σSD
p < 1.3 × 10−39 cm2. For the spin-

dependent cases, the direct detection event rate is substantially higher than for the purely

spin-independent cases, thanks to loose constraints on σSD
p . The bound particles can now

make up a maximum of ≈ 8% of dR/dQ for particles with v < (
√

2 + 1)v⊕, which is still

quite small. In Figure 5.26(b), the various dR/dQ rates for particles with v < (
√

2 + 1)v⊕

are shown on a linear scale. It is clear that particles captured in the solar system by weak

scattering in the Sun still make only a tiny contribution to the total direct detection event

rate.

One would expect the event rate from particles bound to the solar system by gravi-

tational capture to be larger than that of particles bound by weak scattering, since the

gravitationally bound distribution function (Figure 5.24) is bigger than the maximum distri-

bution function for weakly scattered particles for most of the bound geocentric speed range

(Figure 5.22). This is indeed the case, as shown in Figure 5.28. Here, I show the event rates

for unbound particles with v < (
√

2 + 1)v⊕ alone for WIMPs with mass mχ = 500 AMU

scattering against 131Xe (green solid line), 73Ge (blue dashed), and 40Ar (red dot-dashed),

as well as the sum for gravitationally bound and unbound particles with v < (
√

2 + 1)v⊕

(lines with data points). The bound particles now add a maximum of 25% to the low speed

event rate, with this maximum occuring at Q = 0.
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(a) (b)

Figure 5.27: Contribution of the estimated distribution functions for significant spin-de-
pendent cross sections to the event rate for a target composed of xenon and for a WIMP of
mass mχ = 500 AMUs. The spin-independent cross section, used to estimate the scattering
rate on xenon, is σSI

p = 10−43 cm2. Shown are the contribution from all unbound orbits

(green solid line), unbound orbits with v < (
√

2 + 1)v⊕ (red dots), bound orbits for a
distribution function estimated for σSD

p = 1.3×10−39 cm2 (black dot-dashes) and for σSD
p =

10−36 cm2 (magenta long dashes), and for direct result from the Large Mass simulation (cyan
short dashes). (a): Log scale. (b): Linear scale. In this case, the contribution from unbound
orbits alone with v < (

√
2 + 1)v⊕ is shown with a red solid line, and the results from the

weak simulation have the contribution from the unbound orbits with v < (
√

2+1)v⊕ added
in.
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Figure 5.28: Direct detection rates from the gravitational capture simulations with mχ =
500 AMU. The two red lines represent differential event rates for a target of argon for the
purely unbound orbits with v < (

√
2 + 1)v⊕ (dot-dashed) and the sum of the simulations

(with data points), the middle two blue lines represent scattering on germanium (dashes,
unbound; solid with data points, simulation), and the top green lines denote scattering on
xenon (solid, unbound; dotted with data points, simulation). Error bars are of the same size
as the points marking the data.
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In Figure 5.29, I show the maximum direct detection signal due to particles with geo-

centric speed v < (
√

2+1)v⊕ (top line), as well as the event rate due to low speed unbound

particles alone. Again, I set the WIMP mass to mχ = 500 AMU, and show only the case

of a xenon target. The bound particles increase the event rate by a maximum of about a

third above the low speed event rate. At Q = 4.5 keV, the current analysis threshold for

the XENON10 experiment, the increase is about 25%. For lower WIMP masses, one would

expect the bound event rate to drop due to the kinematic effect noted in Eq. (5.21). Also,

one would expect this percentage to drop for targets made of less massive nuclei. While

the bound particles can noticeably increase the low speed event rate, they contribute only

about a maximum of 1% of the total differential event rate, with the maximum occuring

below current analysis thresholds. The increase in the differential event rate is a function

of the energy transfer Q, with the differential event rate excess dropping dramatically for

higher Q.

The small, energy-dependent increase in the differential event rate has several conse-

quences. First, the bound particles only negligibly increase the total event rate (integrating

dR/dQ over the range of Q’s allowed in the analysis window), if at all, so estimates of the

spin-independent cross section from direct detection experiments will not be affected by

bound particles. Secondly, the WIMP mass is extracted from the shape of the differential

event rate. However, the bound particles will tilt the spectrum of events only very slightly.

The errors on the WIMP mass will likely be dominated by, for example, the uncertainty in

the Sun’s speed with respect to the Galactic center.

The main conclusion of this section is that bound particles contribute negligibly to both

the differential and total event rate, in the case that particles are bound to a solar system

containing only Jupiter and the Sun. Since bound particles can only transfer a small amount

of energy to target nuclei, they may not be observable at all by high threshold experiments,

such as those with argon or germanium as a target. Furthermore, even for experiments

with sufficiently low thresholds, errors in the estimate of the WIMP mass and cross section

based on the differential event rate will likely be dominated by astrophysical uncertainty
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Figure 5.29: The maximum contribution to the differential direct detection rate for mχ =
500 AMU and σSI

p = 10−43 cm2. The solid green line shows the contribution to the total

differential event rate for unbound orbits with v < (
√

2 + 1)v⊕, while the dotted line shows
the sum of the gravitational capture experiment and the estimated rate for the bound orbits
from weak scattering in the Sun with σSD

p = 10−36 cm2.
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rather than by the excess events from bound particles.

5.3 Impact on Neutrino Telescope Event Rates

While the contribution of bound particles to the direct detection rate is expected to be

minuscule, there is some hope that the bound particles can significantly boost the neutrino-

induced muon event rate from WIMP annihilation in the Earth. As discussed in Section

1.2.2, the capture rate of WIMPs in the Earth is extremely sensitive to the low-velocity part

of the WIMP distribution function unless mχ ≈ mA for an isotope A in the Earth. Since

unbound WIMPs are only capturable in the Earth if mχ . 400 GeV (see Figure 1.14), only

bound WIMPs are capturable if the WIMP mass is large.

In this section, I focus on neutrino-induced muon event rates from neutralino annihila-

tion in the Earth. As I discussed in Section 2.1.1, it was not necessary for me to specify

a dark matter candidate for the simulations. However, the neutrino spectrum from WIMP

annihilation is very sensitive to the annihilation modes. Therefore, in order to predict neu-

trino fluxes for neutrino telescopes, I should do a scan of parameter space for each WIMP

candidate. Of the two dark matter candidates I have discussed in this thesis, the neu-

tralino from supersymmetry and the B(1) in Kaluza-Klein models, only the neutralino can

produce a neutrino flux observable by km3 telescopes. This is due to the fact that only spin-

independent interactions may produce non-trivial capture rates in the Earth C ∝ σSI
p (see

Section 1.2.2), and that if the capture and annihilation rates have not reached equilibrium,

the neutrino flux Φν ∝ C2 ∝ (σSI
p )2. The Kaluza-Klein models predict low σSI

p . 10−45

cm2, which i far too low (as will be obvious by the end of this Section) to produce an observ-

able neutrino flux. However, parts of MSSM parameter space allow large spin-independent

cross sections. Therefore, I will only explore the neutrino spectrum from neutralino anni-

hilation.

To estimate the neutrino-induced muon event rate for neutrino telescopes from neu-

tralino annihilation in the Earth, I use routines from the publicly available DarkSUSY

code (Gondolo et al., 2004). This is a program that calculates, for a user-specified set of
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MSSM parameters, a number of interesting quantities, including the WIMP relic density,

the spectrum of masses for a given energy scale, cross sections, estimated event rates from

annihilation in the Galaxy, the Earth, and the Sun, etc. One can also check whether a model

described by a set of SUSY parameters is consistent with current collider constraints. In this

program, one can specify all SUSY parameters (of which there are dozens) in the general

soft-supersymmetry breaking MSSM Lagrangian (see, for example, Jungman et al., 1996;

Chung et al., 2005) or use a simplified set of eight inputs specified at the weak-breaking

scale: µ, the Higgsino (Higgs boson superpartner) mass parameter; tan β, the ratio of the

Higgs vacuum expectation values, since the MSSM requires two Higgs; M2, one of the gaug-

ino (superparter of a Standard Model gauge field), through which the other two gaugino

masses are specified; mCP , the mass of the CP-odd Higgs; m0, which sets the masses of

the lepton and quark superpartners; and At and Ab, which parametrize the strengths of

the trilinear couplings in the most general MSSM Lagrangian. All other MSSM parameters

are derived from just these eight inputs. In effect, one samples an eight-dimensional hy-

persurface of the MSSM parameter space. No model-specific SUSY-breaking scheme (e.g.,

supergravity) is assumed.

The first step to finding neutrino-induced muon event rates is to calculate the capture

rates of WIMPs in the Earth. Here, I use the potential and isotope distributions found in

the DarkSUSY code, which in turn come from Encyclopædia Britannica (1994-1999) and

McDonough (2003). In order to reduce computational time, I use an approximation to

calculate the capture rate. The full capture rate in Eq. (1.21) is an integral over seven

dimensions. However, since the Earth is approximately spherical, and I integrate the cap-

ture rate in the whole Earth, to good approximation I can separate the volume and velocity

integrals such that the number of particles in a small patch of phase space centered on

(R,vloc) is

dN = f(v(vloc(R)), θ, φ)d3Rv2
locdvlocd cos θdφ. (5.22)

I have checked calculations of the capture rate using several distribution functions and

WIMP masses, and the simplified capture rate agrees with the full seven-dimensional cap-
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ture rate to several percent. This approximation greatly simplifies the capture rate calcu-

lations.

In Figure 5.30, I show the rates (in captures/year) as a function of neutralino mass,

for σSI
p = 10−43 cm2 and various distribution functions. The peaks in the capture rate

correspond to points at which the neutralino mass is nearly exactly the same as a one of

the common elements in the Earth. The peak at the iron mass (≈ 56 AMU = 53 GeV) is

especially prominent. The solid black line is the free space capture rate. Lundberg & Edsjö

(2004) claim, using their gravitational capture simulations, that this is a good approxima-

tion to the distribution function at the Earth if scattering in the Sun is neglected. The

capture rate at high mass remains high because the distribution function is large at small

speeds (see, e.g., Figure 5.20). The capture rate of just the unbound particles in the solar

system result is represented by the thick red line in Figure 5.30. This capture rate is many

orders of magnitude smaller than that of the angle-averaged halo capture rate, and goes to

zero for neutralinos with masses higher than mχ ≈ 400 GeV. The green long-dashed line

represents the capture rate estimated for both unbound particles and particles bound to

the solar system by spin-independent weak scattering in the Sun. To find the distribution

function of mass, the distribution functions (rather, f(v)/Ṅ⊕(mχ)) from the three simula-

tions with σSI
p = 10−43 cm2 are averaged, and then multiplied by the appropriate initial

scattering rate in the Sun. The cyan short dash-dotted and magenta long dash-dotted lines

represent the distribution functions estimated for σSD
p = 1.3× 10−39 cm2 and σSD

p = 10−36

cm2 respectively, which have been added to capture rate of unbound orbits. The capture

rates estimated here are larger than those from the raw spin-independent weak scatter sim-

ulations because the contribution of the Jupiter-crossing particles goes up as a function of

cross section, filling in the distribution function below v = v⊕. The blue dashed line repre-

sents the results from the gravitational capture experiments in the geocentric speed range

v < (
√

2+ 1)v⊕ in addition to the unbound orbits with v > (
√

2+ 1)v⊕. This demonstrates

that gravitationally captured WIMPs contribute far more heavily to the capture rate in the

Earth than even the maximal contribution from WIMPs bound to the solar system by weak



214

Figure 5.30: Capture rate of WIMPs in the Earth as a function of WIMP mass for σSI
p =

10−43 cm2. The lines correspond to distribution functions for: the halo in the absence of the
gravitational field of the Sun (black solid line), the result from the gravitational simulation
along with the Liouville traced distribution function of unbound orbits above v = (

√
2+1)v⊕

(blue medium dashes), the estimate for σSD
p = 10−36 cm2 with σSI

P = 10−43 cm2 (magenta

long dash dotted line), the estimate for σSD
p = 1.3 × 10−39 cm2 and σSI

p = 10−43 cm2

(cyan short dash dotted line), the result of the simulations for σSI
p = 10−43 cm2 (green long

dashed), and for only unbound orbits (thick red line).

scattering in the Sun, as expected.

In order to translate these capture rates into event rates in a neutrino detector, one must

explore MSSM parameter space. To generate a set of MSSM models for the neutralino, I

make a scan of the MSSM parameter space using the restricted set of inputs. The range

used for each parameter, given in Table 5.1, are the default ranges in DarkSUSY. For µ,

M2, mCP , tanβ, and m0, I randomly sample the logarithmic range, while I sample the

other parameters linearly in their ranges. I keep a model if it makes it through the collider

constraints, 0.05 < Ωχh
2 < 0.135, and σSI

p ≥ 8×10−44 cm2. I choose this lower limit on σSI
p

to include models that are not too much below my choice of σSI
p in the WIMP simulations.
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Table 5.1: Ranges of Parameters for the Restricted DarkSUSY MSSM Inputs at the Weak
Scale

SUSY parameters: µ [GeV] M2 [GeV] mCP [GeV] tanβ m0 [GeV] At Ab

min 10 10 10 1 50 -3 -3

max 10000 10000 100 60 1000 3 3

The allowed region of Ωχh
2 is approximately the 4σ range of Ωdmh

2 from the WMAP -3

analysis (Spergel et al., 2007).

There are several important points about how DarkSUSY calculates neutrino-induced

muon fluxes. For the muon flux calculations in DarkSUSY, neutrino oscillations are ig-

nored, and only the flux of muons from outside the detector volume is calculated. While

Bergström et al. (1998a) find that muons created inside the detector volume dominate the

signal for smaller WIMP masses (mχ . 300 GeV) in large (km3) telescopes, the expected

event rate from muons created within the detector volume depends quite sensitively on the

configuration of detectors inside that volume. Therefore, the event rates here ought to be

considered a lower limit to the actual event rate in a large detector for neutralino masses

mχ . 300 GeV. The cases for which the true event rate in the telescope is probably similar

to the DarkSUSY calculation are those for which the neutralino mass is large, mχ & 300

GeV.

To estimate the muon event rate in a neutrino telescope, I set the muon energy threshold

to Eth
µ = 1 GeV. This is somewhat optimistic for the IceCube experiment (The IceCube

Collaboration, 2001; Lundberg & Edsjö, 2004) unless muon trajectories lie near and exactly

parallel to the PMT strings, but it is reasonable for the more densely packed water exper-

iments (e.g., Super-Kamiokande, ANTARES). However, the signal will drop precipitously

with increasing threshold, as shown in Figure 1.11. I assume that the material surrounding

the detector volume, the target material for neutrino interactions, is either water or ice.

For the muon event rate, I include all muons oriented within a 30◦ cone relative to the

direction of the center of the Earth. The reason for this large cone is that, while one can

treat the WIMP annihilation region in the Earth as approximately a point source for heavy
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WIMPs, neutrino-induced muons resulting from WIMP annihilation can have quite an an-

gular spread. There are two contributing factors for this spread. First, if one treats the

neutralinos as having thermalized in the Earth before annihilating, the WIMP annihilation

region is bigger for smaller mass WIMPs. This is a consequence of the fact that if WIMPs

are in thermal equilibrium with baryonic species in the Earth, the WIMP number density

is

n(r) ∝ e−E/kT (r) (5.23)

∝ e−mχΦ⊕(r)/kT (r), (5.24)

where T (r) is the temperature in the Earth at a position r from its center and Φ⊕ is the

gravitational potential of the Earth. Therefore, the more massive WIMPs are concentrated

into a small volume near the center of the Earth. Secondly, when neutrinos undergo charged-

current interactions in the medium surrounding the telescope, the muons are more likely to

be aligned with the neutrino direction if the neutrinos have higher energy, which is more

likely if the neutralino mass is higher (Edsjö & Gondolo, 1995).

In the following figures, I present muon event rates in neutrino telescopes for various dis-

tribution functions. In Figure 5.31, I show the event rates assuming a free space distribution

function at the Earth, for reference. The solid black line on Figure 5.31 represents the most

optimistic flux threshold for IceCube (Lundberg & Edsjö, 2004, and references therein). To

show how the event rates depend on the SUSY models for a given spin-independent cross

section, I mark the models on the Figure according to which direct detection experiments

bracket the cross section for a given neutralino mass. The red open circles correspond to

SUSY models with cross sections that lie above the final Edelweiss (Sanglard et al., 2005)

spin-independent cross section limit (Figure 1.7). Green open triangles mark models with

σSI
p lying between the Edelweiss and Zeplin-II (Alner et al., 2007) exclusion curves, while

filled cyan triangles denote those models with σSI
p between the Zeplin-II and CDMS (Akerib

et al., 2006b) limits. Blue dots show models with limits between the CDMS and the recent

XENON10 (Angle et al., 2007) limits, and magenta open boxes show models below the

XENON10 exclusion curve. Since I kept models with only σSI
p > 8× 10−44 cm2, no models
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below the XENON10 exclusion curve with masses less than 70 GeV are shown. From Figure

5.31, it is apparent that with the fiducial local halo mass density (ρχ = 0.3 GeV cm−3), the

muon event rate of muons created outside the detector volume will be well below threshold

for most models consistent with bounds on σSI
p , even for this distribution function which is

unrealistically large at small speeds because it neglects the acceleration of unbound WIMPs

due to solar gravity. The only models which have event rates above threshold are those for

which the neutralino mass is near the iron mass. If the event rate due to muons created

within the detector volume were included, or if the true local dark matter density were a

factor of several higher (since the event rate is proportional to ρ2
χ), it might be possible to

push some of those magenta boxes above the IceCube threshold.

I compare these results with event rates from neutralinos that were unbound to the solar

system prior to capture in the Earth, including gravitational focusing by the Sun. These

event rates are presented in Figure 5.32. The event rates are sharply reduced relative to

those in Figure 5.31, making it unlikely that muons from unbound halo particles will be

identified unless the WIMP mass lies near the iron mass. In Figure 5.33, I add the capture

rate from weak scatter in the Sun (assuming that spin-independent interactions dominate

scatter in the Sun) to the capture rate of unbound particles, and estimate the muon event

rate. In order to determine the capture rate due to weak scattering in the Sun, I make some

assumptions on the cross section and time dependence of the distribution function. The

basis for the distribution function is the average of f(v)/Ṅ⊕ over the three σSI
p = 10−43 cm2

simulations. Since a large part of the distribution function is in place by 1 Gyr, and the low

speed (v < v⊕) reaches equilibrium by 10 Myr, I treat the distribution function as constant

with time so that I can use the solution Eq. (1.23) for the differential equation in Eq.

(1.20). The full time-dependent solution to Eq. (1.20) is non-trivial. The approximation

should be okay for WIMP cross sections σSI
p & 10−43 since half or more of the buildup in

the distribution function should occur on timescales t < 109 yr, and should in any case be

more than valid for speeds v < v⊕. I assume that the portion of the distribution function

f(v) due to non-Jupiter-crossing particles is fixed as a function of cross section, and that
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Figure 5.31: Muon event rates with an optimistic energy threshold of 1 GeV for a sample
of SUSY models. The dark matter distribution function is the halo distribution function
in the absence of the solar system. The SUSY models marked with red open circles have
spin-independent cross sections above the Edelweiss limit (see Figure 1.7 and Sanglard
et al., 2005), those marked with open green triangles have σSI

p lying between the Edelweiss
and Zeplin-II limits (Alner et al., 2007), cyan triangles denote those with the cross section
between the Zeplin-II and CDMS limits (Akerib et al., 2006b), blue dots mark models with
spin-independent cross sections between the CDMS (Akerib et al., 2006b) and XENON10
limits, and magenta-outlined boxes denote models with σSI

P lower than the XENON10 limit
(Angle et al., 2007).
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Figure 5.32: Muon event rates from halo WIMPs unbound to the solar system. The symbols
have the same meanings as those in Figure 5.31.

f(v)/Ṅ⊕ is fixed for Jupiter-crossing orbits. The latter assumption should be valid for all

spin-independent cross sections represented in my MSSM parameter scan, while I would

expect the former assumption to be violated for high cross section. This is because there

is a factor of three rise between the high plateau of the σSI
p = 10−43 simulations and the

DAMA simulation. Therefore, the points in Figure 5.33 above the Edelweiss limit and with

mχ < 150 GeV should be somewhat higher than shown on the plot. However, as one would

expect from the capture rates in Figure 5.30, the event rate from neutralinos bound to the

solar system via spin-independent elastic scattering in the Sun is extraordinarily low, given

constraints on the spin-independent cross section. Figure 5.33 is indistinguishable from

Figure 5.32.

The event rate can be boosted if the spin-dependent cross section is large, since con-

straints on the spin-dependent cross sections are far weaker than those on the spin-inde-

pendent cross section. To find a maximum event rate due to weak scattering in the Sun,
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Figure 5.33: Muon event rates using the results of the weak scattering simulation and
including the contribution particles unbound to the solar system. The distribution function
is based on the average of the three simulations with σSI

P = 10−43 cm2. The symbols have
the same meaning as those in Figure 5.31.
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I use the estimated distribution function for σSD
p = 10−36 cm2. I assume that the distri-

bution function is independent of the spin-independent cross section, and that f(v)/ṄH
⊕ is

independent of WIMP mass. The spin-dependent cross section is slightly above the NAIAD

exclusion limit (Alner et al., 2005), and definitely above the KIMS limit (Lee et al., 2007),

and marks the point at which the Sun can no longer be thought of as being optically thin

for WIMPs. For the SUSY models I generated, all σSD
p lie below 10−36 cm2, so technically

I should not be using the estimated distribution function for σSD
p = 10−36 cm2 for these

models. However, it is possible that in some part of SUSY parameter space that I have not

explored, such high cross sections are possible and have a similar annihilation spectrum as

the SUSY models I have generated. Therefore, the event rates estimated with this distribu-

tion function ought to be considered an upper limit on the muon event rate. The estimated

muon event rates are presented in Figure 5.34. While the event rates are certainly higher

than those for purely spin-independent scattering in the Sun, they are still, with the usual

exception of the iron resonance, well below the IceCube detection threshold for those models

with spin-independent cross sections consistent with recent experiments.

In Figure 5.35, I show the event rates estimated from the gravitational capture experi-

ments. In this case, using the Eq. (1.23) time-independent solution to Eq. (1.20) is valid,

since the distribution function is fixed by 100 Myr. The distribution function is independ-

ent of both elastic scattering cross section and WIMP mass. The capture rate used to

determine the muon event rate is determined by the gravitational simulation for geocentric

speeds v < (
√

2+1)v⊕ and the unbound halo distribution function above those speeds. The

event rates from gravitational capture to the solar system are significantly higher, espe-

cially at high masses, than the maximum event rate from the bound population from weak

scattering in the Sun. However, the event rates for most models still lie below the IceCube

threshold.

The final event rate estimate I include (Figure 5.36) is the combination of the maximum

weak scattering and the gravitational scattering result. This should be considered to be an

upper limit to the event rate from particles scattered onto bound orbits in a solar system
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Figure 5.34: Muon event rates using the estimated distribution function for σSD
p = 10−36

cm2. Symbols mark the same models as in Figure 5.31.

consisting only of the Sun and Jupiter, in the absence of neutrino oscillations and muons

created within the detector volume. The event rates for models consistent with either

CDMS or XENON10 are still well below the IceCube threshold especially for high masses,

with the exception of models with neutralino masses near the iron mass. This is consistent

with what was expected even from Figure 5.31. The combined bound distribution function

is still far less at low geocentric speeds than the free space distribution function.

Even though the prospect for seeing a neutrino-induced muon signal from WIMP an-

nihilation in the Earth is dim, there are several reasons to hope that the signal might be

boosted above these estimates. First, the event rates have been calculated assuming that

neutrinos do not oscillate. While this might have been a conservative assumption when the

relevant section of the DarkSUSY code was written in circa 1996, it is clearly a poor as-

sumption to make now. Blennow et al. (2007) have demonstrated that neutrino oscillation

in the Earth will increase the muon-neutrino flux at the surface by a factor of several at low



223

Figure 5.35: Muon event rates using the result from the gravitational capture simulations.
Symbols mark the same models as in Figure 5.31.

energies, although oscillation makes less of an impact on the expected rates of the higher,

more easily observed neutrinos (see their Figure 8). Secondly, the muon event rates ought

to be considered a lower bound on the event rate in an actual detector since DarkSUSY

only considers the flux of muons that are created outside the detector volume. Since, in

particular, the IceCube experiment has a fairly large volume, one might expect events orig-

inating inside the detector to be quite important, especially at the low end of the neutrino

energy spectrum. Bergström et al. (1998a) find that the muon event rate is increased by up

to an order of magnitude for WIMP masses of mχ . 300 GeV in the class of km3 telescopes,

although the expected enhancement depends on the detector design. The enhancement is

negligible for smaller detector volumes. Thirdly, I have assumed a local neutralino density

of ρχ = 0.3 GeV cm−3. This is rather at the low end of the allowed range of ρχ given current

constraints (see Section 1.3). If the true dark matter density were 2 − 3 times higher than

my fiducial density, then the expected signal would go up a factor of 4 − 9. Finally, if the
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Figure 5.36: Muon event rates using the estimated distribution function for σSD
p = 10−36

cm2 and the results from the gravitational capture simulation. This is the maximum total
event rate in Jupiter is the only planet in the solar system. Symbols mark the same models
as in Figure 5.31.
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other planets were included in the model solar system, the effect would likely be to increase

the lifetimes of bound particles. They would also smear out the the particles’ z-component

of the angular momentum, thereby opening up the dark matter distribution function below

the 8.8 km s−1 geocentric speed threshold. Therefore, the true bound distribution function

is likely to be larger at lower speeds than that estimated in this work.

However, in spite of all of these effects that may boost the muon rate in neutrino tele-

scopes, it may never be possible to observe products of WIMP annihilation in the Earth

if the spin-independent cross section is much lower than the current XENON10 exclusion

limits unless a truly monstrous neutrino observatory is built. In addition, the flux limit for

IceCube will likely be higher than that indicated in the plots in this section (Lundberg &

Edsjö, 2004). As demonstrated in Figure 1.11, the muon event rate drops dramatically as a

function of increasing experimental threshold. Even though there is a big signal at Eth
µ = 1

GeV for WIMPs with mχ ≈ mFe, the signal drops by more than four orders of magnitude

if the threshold is raised to Eth = 50 GeV. Therefore, even if the muon event estimates

in this section are low, it still may not be possible to definitively detect neutrino-induced

muons from WIMP annihilation in the Earth.

5.3.1 An Aside on Neutrinos from the Sun

Another possible source of neutrinos is WIMP annihilation is the Sun. Even though the

center of the Sun is a factor of 2× 107 further away from neutrino observatories than is the

center of the Earth, the Sun has the potential to capture far more WIMPs than the Earth

(see Section 1.2.2), and may be able to provide a higher flux for neutrino observatories

than the Earth, especially if the spin-independent cross section is quite low. Recently,

the prospect of indirect detection of WIMPs from the Sun has become more attractive

because it has been suggested that it could do better than direct detection experiments in

constraining the proton-WIMP interaction (Halzen & Hooper, 2006). Currently, upcoming

ton-scale direct detection experiments are not expected to constrain the spin-dependent

WIMP-proton cross section very well. The targets of proposed ton-scale experiments will
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Figure 5.37: Limits on the proton-WIMP cross section from the Super-Kamiokande (Desai
et al., 2004), ELEGANT V (Yoshida et al., 2000b) and UKDMC (NAIAD) (Alner et al.,
2005) experiments. This figure is from Desai et al. (2004).

largely consist of isotopes that will have unpaired neutrons but not unpaired protons, or

will have even numbers of both protons and neutrons. Hence, upcoming experiments will

be far more sensitive to the WIMP-neutron cross section than the WIMP-proton cross

section (Girard & Giuliani, 2007). This disparity results from the main science goal of

the experiments, which is to probe the spin-independent cross section. The best limits for

this cross section have come from (and will continue to be from) experiments with target

nuclei containing even numbers of protons. Therefore, the tightest future constraints on the

WIMP-proton cross section will likely come from indirect detection experiments.

While many experiments have placed upper limits on the event rates of neutrino-induced

muons from the Sun (AMANDA, Ackermann et al. (2006); MACRO, Ambrosio et al. (1999);

Baksan, Boliev et al. (1996)), the Super-Kamiokande group is the first to attempt to trans-

late the upper limit on muon flux to an upper limit on the WIMP-proton cross section

(Figure 5.37). The Super-K procedure illustrates the promise of using indirect detection

to constrain the WIMP-proton cross section as well as some already known complications

and uncertainties. A major concern in interpreting a neutrino-induced muon signal from
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WIMP annihilation is that the event rate depends not only on the capture rate but also

on the annihilation branching ratios. In order to determine the resulting spread in event

rates for a fixed WIMP mass, Kamionkowski et al. (1995) computed neutrino energy spec-

tra for a variety of WIMP annihilation modes. They then compute the ratio of the direct

to the indirect detection rate for specific channels for a fixed WIMP mass. The maximum

ratio γ(mWIMP) is determined by the annihilation mode that produces the lowest indirect

detection event rate. Desai et al. (2004) then use γ(mWIMP) to place a conservative upper

limit on σSD
p by first translating the neutrino-induced muon event rate to a direct detection

rate, which in turn has a one-to-one relation with the spin-dependent cross section in the

absence of scalar interactions. Here, I use mWIMP instead of mχ since it is possible that

Kaluza-Klein WIMPs could produce an observable signal.

As demonstrated in Figure 5.37, this method appears to be more than competitive

with current direct detection experiments in constraining the WIMP-proton cross section.

However, aside from the known astrophysical uncertainties in the dark matter distribution

function, which complicate the interpretation of signals, there are several other effects that

can seriously affect the ability to properly translate signals to constraints on dark matter

models. It is extremely important to take neutrino oscillations and the interactions of neu-

trinos in the Sun into account. Neither of these effects were included in the Desai et al.

(2004) analysis. Various authors have demonstrated that these effects can either greatly

increase or decrease the expected indirect detection signal depending on the WIMP anni-

hilation branching ratios (Cirelli et al., 2005; Barger et al., 2007a; Blennow et al., 2007;

Lehnert & Weiler, 2007).

I would like to focus attention on an effect that may decrease the expected indirect de-

tection signal from the Sun for very massive WIMPs. In particular, I would like to address

the calculation of the capture rate of WIMPs in the Sun. It is usually assumed that once a

particle is captured by the Sun, it quickly thermalizes (with the thermalization time many

orders of magnitude below the age of the solar system), becomes concentrated in the in-

ner r < 0.01R�, and annihilates with another WIMP. However, if the spin-dependent mode
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dominates capture within the Sun, almost 100% of WIMPs are captured onto Earth-crossing

orbits for mWIMP & 1 TeV, as demonstrated by Figure 5.12(c). In this chapter, I have found

that WIMPs that are initially scattered onto Jupiter-crossing or near-Jupiter-crossing orbits

generally escape before rescattering in the Sun for modest cross sections. These particles

will never thermalize. In addition, particles with a > 1.5 AU have a fairly high probability

of experiencing quasi-Kozai behavior, thus drastically extending their lifetimes in the solar

system and hence, delaying thermalization times. Moreover, for such high WIMP masses,

particles are likely to rescatter onto fairly high energy orbits, thus prolonging lifetimes even

more. Therefore, for modest cross section (σSD
p . 10−39 cm2), most particles with initial

semi-major axes ai > 1.5 AU either never thermalize or thermalize millions to billions of yr

after their initial capture in the solar system. Thus, to properly predict the capture rate

of particles that can thermalize in the Sun, it is necessary to determine what fraction of

particles captured in the Sun are captured onto orbits of a > 1.5 AU.

I use a cold Sun approximation to estimate what percentage of particles cannot thermal-

ize, at least very quickly. For a WIMP mass mWIMP = 100 GeV, about 2% of captured par-

ticles are on orbits with a > 1.5 AU. This percentage increases to ≈ 10% for mWIMP = 500

GeV, 20% for mWIMP = 1 TeV, and 40% if mWIMP = 2 TeV. The upper end of this mass

range is preferred by Kaluza-Klein models. If the WIMP were a truly massive 10 TeV, then

nearly all captured particles would have a > 1.5 AU. Therefore, if the WIMP mass is very

large, and if the spin-dependent WIMP-proton cross section is σSD
p . 10−39 cm2, a signif-

icant fraction of WIMPs initially captured by the Sun never thermalize. While prospects

for constraining the spin-dependent WIMP-proton cross section from WIMP annihilation

in the Sun are good if the WIMP is only moderately massive (mWIMP < 1 TeV), they

become quite poor if the WIMP is quite massive. Estimating the neutrino event rate will

depend on the detailed properties of how the WIMPs thermalize in the Sun; these could be

determined by simulations similar to the ones in this thesis.
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Conclusion

6.1 Summary

In this thesis, I have developed numerical techniques and codes that allow me to follow the

evolution of the WIMP population bound to the solar system. These techniques include an

orbit integrator that can follow even highly eccentric orbits penetrating the Sun for billions

of years with only small, oscillatory energy errors. I have applied these codes to the problem

of determining the distribution function and event rates at the Earth of WIMPs bound to a

simplified solar system with only one planet, Jupiter. In Chapter 5, I presented the results

of my simulations for a selected set of WIMP masses and cross sections (Tables 2.1 and

2.2), and determined approximately how the results change as a function of WIMP mass

and elastic scattering cross section. The main result of that chapter was that the bound

distribution function is never very big. In Section 5.1, I showed that the bound distribution

function arising from particles scattering in the Sun will probably be largest relative to

the unbound distribution if the WIMP-proton cross section is large and the WIMP mass

is fairly modest (no more than several hundred GeV). Even in this case, the phase space

density would still be quite a bit smaller than that of unbound particles streaming through

the solar system, such that the number density of particles is < 10−3nhalo
χ .

The smallness of the bound distribution function is in sharp contrast to the analytic
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predictions of Damour & Krauss (1999), and results from a combination of the three main

effects: (i) The lifetimes of particles on Kozai cycles are small relative to the age of the

solar system. (ii) The phase space density of bound, Jupiter-crossing orbits grows slowly

as a function of WIMP-nucleon cross section for high cross sections (the WIMPs are more

likely to be captured on bound orbits but also more likely to be rescattered in the Sun). (iii)

Current experimental limits on the scattering cross section are substantially smaller than

those assumed by Damour & Krauss. The bound distribution function due to gravitational

capture in the solar system is approximately described (within 20% for v < 30 km s−1

and to within a factor of two for higher speeds) by the “conservative scenario” of Gould &

Alam (2001). This distribution function is relatively insensitive to the WIMP mass and the

WIMP-nucleon elastic scattering cross section.

The smallness of the bound WIMP population has several implications for Earth-based

WIMP detection experiments. For more massive target nuclei, it will be possible for events

to lie above the analysis threshold. For example, in the case of a target of 131Xe, bound

WIMPs of mχ & 200 GeV can produce events that lie above the XENON10 analysis thresh-

old of Qth = 4.5 keV. However, the maximum possible differential direct detection event

rate due to bound particles is about . 1% of the unbound halo event rate. Moreover, the

maximum energy transfer Q for bound particles will always be small, Qmax . 10 keV, so the

total increase to the integrated event rate will also be very small. A pessimist’s view of this

result is that bound WIMPs will not raise the expected event rate for any plausible WIMP

parameters, in contrast to the very optimistic prediction of Damour & Krauss (1999). An

optimist’s viewof this result is that parameter estimation based on the spectrum of recoil

events (or lack of events, which is currently the case), which is currently based on unbound

orbits alone, is unlikely to be affected by the presence of bound WIMPs.

The smallness of the bound distribution function also makes it unlikely that WIMP cap-

ture and annihilation in the Earth will be detected in upcoming large neutrino experiments.

In Figure 5.31, I showed through-going muon event rates for a neutrino telescope with a

threshold of Eth
µ = 1 GeV using the free space distribution function at the Earth. Even with
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this distribution function, which is large relative to the true unbound distribution function

in the potential well of the Sun and Earth at low speeds, the flux of neutrino-induced muons

falls well below the IceCube threshold for MSSM models with σSI
p consistent with the recent

XENON10 results. The maximum event rate from my simulations is at least two orders of

magnitude below the IceCube threshold unless the WIMP mass is approximately the iron

nucleus mass (this is due to a resonance, such that the WIMP can transfer all its energy

to the nucleus for arbitrary initial energy), and is in general orders of magnitude smaller

than the free space event rate for the same WIMP model (by a factor of about ∼ 10 near

mχ = 100 GeV, by a factor of ∼ 104 for mχ = 300 GeV; see Figure 5.36). Moreover, the

energy threshold for an IceCube-type experiment is likely to be much higher than Eth
µ = 1

GeV (although not for current water-based neutrino telescope configurations), and the ex-

pected event rate drops rapidly as a function of telescope energy threshold. Therefore, it

is quite unlikely that products of WIMP annihilation in the Earth can be distinguished in

planned neutrino telescopes.

6.2 Future Directions

In this section, I will discuss some possible extensions to the work in this thesis. First, I will

suggest some possible speed-ups to the simulations, and potential methods to get better

statistics on the dark matter distribution functions. Secondly, I make the argument for

studying both weak scatter and gravitational capture experiments using all the planets in

the solar system, not just Jupiter.

6.2.1 Possible Speed-Ups

Three types of orbits dominate the computational time: Kozai-cycles, quasi-Kozai cycles,

and relatively long-lived Jupiter-crossing orbits. It would be of great interest to reduce the

computation time of such trajectories to improve the error bars on the distribution functions.

Such a speed-up would also allow for a more thorough investigation of dependence of the

distribution function on the mχ − σSI
p parameter space.
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After an integration time of ∼ 106 years, it should be easy to distinguish particles on

Kozai cycles from all other types of orbits. As long as the initial semi-major axis is not

near a resonance, the contribution of a particle on a Kozai resonance to the distribution

function is governed by three factors: (i) the lifetime of the Kozai cycle; (ii) the optical

depth per Kozai cycle; and (iii) the intersections the particle orbit with the Earth’s orbit,

which determines the contribution to the distribution function of a particle in one Kozai

cycle. Therefore, one can use the initial 106 year integration to determine all three of these

properties. Then, instead of doing probabilistic scattering in the Sun for each passage in

the Sun, one can compute probabilistic scattering on a per Kozai cycle basis, as long as

τKozai � 1. The part of the distribution function due to each particle is then the distribution

function from one cycle multiplied by the number of cycles the particle survives. One can

then do a Monte Carlo treatment of the rescattering and continue to follow the particle.

The efficiency would also be greatly enhanced by a mapping method for the quasi-

Kozai and Jupiter-crossing particles. Several groups (Malyshkin & Tremaine, 1999; Pan &

Sari, 2004) have found symplectic maps for highly eccentric comets with low inclinations in

the restricted circular three-body problem. Malyshkin & Tremaine (1999) are interested in

long-period, planet-crossing orbits, whereas Pan & Sari (2004) are concerned with describing

resonances for eccentric orbits entirely exterior to a planet, in a very narrow range of Jacobi

constant. In both of these maps, the torque from the planet is applied as a “kick” at

perihelion (Malyshkin & Tremaine, 1999). In order to make the maps symplectic, these

authors require several big approximations regarding the treatment of the kicks. In general,

the kick in energy and angular momentum due to tidal torques depends on the energy and

angular momentum of the orbit. However, in the limit of high eccentricity, the angular

momentum is almost zero, and both the perihelion of the orbit as well as the energy can

be approximated to depend only on the Jacobi constant. Therefore, for the case of high

eccentricity and large semi-major axis, which are the limits examined by the two different

maps, the kicks depend only on the orientation between the perihelion and the planet, and

the change in angle between the perihelion and the planet only depends on a via the period



233

of the particle’s orbit.

I have attempted to generalize these sorts of eccentric maps to a fully three-dimensional

three-body problem, in the case where the particle is fully interior to the planet’s orbit. In

this case, I “kick” the energy and angular momentum at aphelion ra ≈ 2a. This approach

has not yet been successful for several reasons: (i) Real orbits can have small eccentricities,

which are very difficult for these eccentric maps to describe well. (ii) To construct my

distribution functions, it is vital to understand how the osculating orbital plane intersects

the reference frame. Particles with low eccentricity can boost the distribution function since

their orbits are not very radial and f(v) ∝ v−1
r . Therefore, eccentric maps fail where they

are most needed. (iii) Kicks are not described very well as being applied only at aphelion,

because the perihelia may not be far away from the planet, either. Also, ra 6= 2a, which is

a problem if torques are applied at an aphelion of ra = 2a.

I have not experimented with maps for Jupiter-crossing orbits, but I suspect there will

be similar problems, although Malyshkin & Tremaine (1999) say that their map “provide[s]

a fair representation of the behavior of orbits with short periods.” Aside from symplectic

maps, another approach to speeding understanding the statistical properties of small bodies

(comets, asteroids, WIMPs) in the solar system is the Öpik approach (Öpik, 1951). In this

model, encounters of small bodies with planets are modeled as two-body encounters within

the Hill sphere (of radius rH , defined as the point where the gravitational potential of the

Sun Φ�(rH) = ΦP (rH) is equal to the potential of planet P , ΦP ). Typically, codes that

apply this type of encounter assume that encounters with planets are uncorrelated (see the

introduction of Dones et al., 1999). However, Dones et al. (1999) show that these methods

do not describe the orbits of long-period comets or meteorite orbits well at all because they

cannot, by design, describe secular, Kozai, or mean motion resonances. These resonances

are largely responsible for the behavior of the bodies of interest to Dones et al.. I have

shown in Chapter 5 that much of the WIMP distribution function is governed by Kozai

and mean motion resonances. Therefore, unless I can find a symplectic map that applies

for arbitrary eccentricity, it will continue to be necessary to do numerical integration of
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quasi-Kozai and Jupiter-crossing orbits.

6.2.2 The Full Solar System Simulation

The simulations of WIMPs in my model solar system consisting only of the Sun and Jupiter

have some limitations compared with simulations with a full complement of planets. First,

WIMPs have access to a much smaller region of phase space in the restricted solar system.

For example, recall from the discussion in Chapter 5 that the minimum accessible geocentric

speed is v ≈ 8.8 km s−1 in a solar system containing only Jupiter. Particles that are initially

scattered in the Sun onto orbits of a < aJ/2 may only have a very small z-component of

angular momentum since there is no mechanism through which the angular momentum may

be significantly altered to reach smaller geocentric speeds. From Figures 5.1 and 5.3, one

sees that the particles in either the weak scattering or gravitational capture simulation only

inhabit a small portion of the full velocity space at the Earth. Secondly, all timescales in

the model solar system are either related to Jupiter or the optical depth of the Sun. There

are many more planets in our solar system that may affect the low-speed end of the velocity

distribution function and change the timescales for rescattering or ejection.

In the discussion below, I specify which results from my simulations I expect to hold

even with a more realistic solar system, and which results I think may change. I will split

the discussion into four parts, corresponding to each type of orbit that contributes to the

weak scattering bound distribution function (see Figure 5.5): rescattering hump, quasi-

Kozai cycle, Kozai cycle, and Jupiter-crossing orbits. The discussion of Jupiter-crossing

orbits will also be relevant for the gravitational capture simulation. In each part of the

discussion, I will address the following questions: (i) Does the presence of the other planets

extend lifetimes in the solar system? (ii) Do the orbits differ significantly from those in the

toy model solar system?
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The Rescattering Hump

The distribution function of particles captured to the solar sytem by weak scattering in

the Sun could be greatly increased if the planets were to either (i) pull a larger percentage

of particles out of the rescattering hump and onto orbits that only occasionally enter the

Sun or (ii) extend the lifetimes of particles that already did exit the Sun in the toy model

solar system simulations. The particles in the rescattering hump in Figure 5.5 largely

cannot exit the Sun under the influence of Jupiter alone, although a small minority of the

particles would have exited the Sun had they not been prematurely rescattered. The vast

majority of the rescattering hump particles never cross Jupiter’s orbit. These types of orbits

suggest two ways that the full solar system might alter the rescattering hump particles: (i)

The presence of the other planets can alter the structure of Kozai cycles, thus perhaps

changing the number of particles that are on Kozai cycles for which the minimum value

of the eccentricity places perihelia outside the Sun for some time. (ii) Through chaotic

interactions with the inner planets, the angular momenta can increase to the point that the

perihelia emerge from the Sun.

Both the inner and outer planets can affect the structure of Kozai cycles. Let me discuss

the outer planets first. I argue that torques from the outer planets are unlikely to change

the number of particles whose perihelia exit the Sun. As demonstrated in Eq. (5.15), the

torque on a particle by a faraway planet goes as K ∝MPa
2a−3

P , where MP and aP are the

mass and semi-major axis of the planet, and a is the semi-major axis of the particle. A

planet will provide a torque

KP =
MP

MJ

(
aJ

aP

)3

KJ (6.1)

relative to the torque from Jupiter. Even Saturn, the next largest planet in the solar system,

and the second nearest gas giant to the Earth, will only produce a torque about 5% that

from Jupiter. Jupiter dominates the tidal field for particles that do not cross the orbits of

the outer planets, and so it dominates the structure of the Kozai cycles.

Among the inner planets, Michel & Thomas (1996) find that the Earth and Venus can
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dominate the structure of the Kozai cycles if the semi-major axis of the particle is near the

semi-major axis of either planet, the initial eccentricity of the particle orbits is small, and

the maximum inclination of the orbit is low. However, given that Michel & Thomas’s in-

terest was in near-Earth asteroids, they did not investigate the structure of highly eccentric

orbits, the type relevant to this thesis. One can gain some insight as to how important the

inner planets will be for highly eccentric particle orbits from work on the structure of Kozai

cycles in the outer solar system. Thomas & Morbidelli (1996) find that the presence of all

gas giants greatly changes the structure of Kozai cycles of outer planet-crossing comets, but

only for comets that initially had large Jz. For comets will small Jz, the Kozai structure

in the 4-planet model was virtually identical to that of a 1-planet model consisting only

of Jupiter. Therefore, I do not expect the structure of Kozai cycles in the full system for

non-Jupiter-crossing particles to be much different from the toy model solar system. The

extra planets will not increase the number of particles on Kozai cycles in the inner solar

system.

Therefore, I will focus on examining the diffusion effects of the inner planets. If particle-

planet interactions can be modeled as two-body encounters, each time a particle of helio-

centric speed v crosses a planet’s orbit, the particle’s planet-centric speed u changes by

δu ∼ GMP

bu
, (6.2)

where b is the impact parameter. Particles in the rescattering hump are generally on

extremely eccentric orbits, so that to good approximation, u =
√
v2 + v2

P , where v2
P =

GM�/aP . For the moment, I assume that changes to the particle’s energy over many such

encounters is far slower than the time it takes a particle’s perihelion to diffuse out of the

Sun. I will come back to problem of changes to the particle’s energy in the discussion of

quasi-Kozai cycle orbits. With these assumptions, the change in planet-centric speed can

be related to the change in heliocentric speed by

δv ∼ uδu

v
(6.3)

=
GMP

bv
. (6.4)
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The change in angular momentum per encounter is thus

δJ ∼ aP δv. (6.5)

I use the approximation that the angular momentum undergoes a random walk to es-

timate the timescale on which a particle’s angular momentum changes of order ∆Jout ∼
√
GM�R� in order for the orbital perihelion to lie outside the Sun. The rms change in

angular momentum will go as

〈(∆J)2〉 ∼ N(δJ)2, (6.6)

where the particle encounters planet P with an impact parameter b or less a total of N

times in a time span t. In general,

N ∼ t

(aP /b)2Pχ
, (6.7)

where Pχ is the orbital period of the WIMP. The factor (b/aP )2 can be thought of as the

probability per WIMP period that the WIMP comes within a distance b of the planet.

Thus, with some rearranging, I find

〈(∆J)2〉
(∆Jout)2

∼
(
MP

M�

)2 (
aP

R�

)(
a

a⊕

)−3/2 (
2 − aP

a

)−1
(
t

yr

)
. (6.8)

There is a coefficient of order unity involved in this equation to represent the integral over

all impact parameters. Using this formula, one can see that the timescale for

〈(∆J)2〉/(∆Jout)
2 ∼ 1 (6.9)

is of order t ∼ 109 yr unless a ≈ 0.5a⊕. In the latter case, the approximation that u =
√
v2 + v2

P is no longer so good, since even eccentric particles have r · v = 0 at aphelion.

More careful treatments show that orbits with a ≈ 0.5a⊕ will have larger rms variation in

angular momentum than orbits with larger a.

It is useful to compare the timescale for 〈(∆J)2〉 = (∆Jout)
2 to the timescale on which

WIMPs rescatter in the Sun. For particles in the simulations with σSI
p = 10−43 cm2, the

rescattering timescale was t ∼ 105 yr. The timescale for angular momentum diffusion is far
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greater than this, so it is unlikely that angular momentum diffusion due to the inner planets

will increase the number of long-lifetime WIMPs unless the WIMP-nucleon cross section is

several orders of magnitude smaller. Therefore, neither changes to the Kozai structure nor

the diffusion of angular momentum are likely to increase the number of particles which will

at some point have their orbital perihelia outside the Sun. Given that the simplest way

to boost the distribution function of bound particles is to increase the number of particles

for which the perihelion may leave the Sun, it is unlikely that the total bound distribution

function due to particles scattering weakly in the Sun will be much larger than predicted

by the toy model solar system simulations.

Quasi-Kozai Cycles

There are several ways that the presence of more planets can affect particles on quasi-Kozai

orbits. First, with the additional planets there will be more mean motion and secular

resonances which can interact with the Kozai cycles. However, these extra resonances are

unlikely to change the rescattering timescales since the lifetime distribution of these particles

is already governed by a mix of Kozai and mean motion resonances. In addition, particles

on quasi-Kozai cycles may have close interactions with the inner planets. Such interactions

have the potential to change the lifetime, energy, and angular momentum distribution of

this population of particles. To estimate how much the presence of the inner planets affects

the quasi-Kozai orbits, I examine the rms change to the semi-major axes as a function

of time in the random walk approximation. Particles on quasi-Kozai cycles cannot be

perfectly described by the random walk approximation due to the presence of resonances

in the problem. However, the orbits do show chaos, so the random walk approximation is

probably not completely invalid.

The rms change in a WIMP’s semi-major axis 〈(∆a)2〉 can be described by

〈(∆a)2〉 ∼ N(δa)2, (6.10)
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where as in Eq. (6.6), δa is the change in semi-major axis per encounter and N is the total

number of interactions a particle has with a planet P with impact parameter b. Since

δa =
a2

GM�

vδv, (6.11)

I can use the expression for δv in Eq. (6.4) to find

δa =

(
MP

M�

)
a2

b
. (6.12)

Using the expression for N in Eq. (6.7), I find that

〈(∆a)2〉
a2

∼
(
MP

M�

)2 (
a

aP

)2 (
a

a⊕

)−3/2 (
t

yr

)
. (6.13)

The inner planets which will perturb the orbits the most are Venus and the Earth. However,

even for these planets, the timescale for 〈(∆a)2〉1/2/a ∼ 1 is 1010 − 1011 yr, far longer than

the age of the solar system. This suggests that the inner planets will not be very effective

in smearing out the semi-major axis distribution.

One can use the argument starting with Eq. (6.2) to argue that the inner planets will

also not be very effective in smearing out the distribution of Jz. Unless a ≈ a⊕/2, the

total change in Jz will only be a few times
√
GM�R� before the particles are rescattered in

the Sun. This fact, combined with the analysis of the rms changes in the semi-major axis,

suggests that the lifetime and distribution function of quasi-Kozai particles in the full solar

system will be similar to that in the toy model solar system.

Kozai Cycles

The big question to ask in the context of the full solar system is, how robust are the Kozai

cycles to collisions with the inner planets? The analysis in the previous section on quasi-

Kozai cycles suggests that, in general, the effects of the inner planets are small. However,

there are two issues that are very different for pure Kozai cycles than quasi-Kozai cycles.

First, changes in the orbital elements cannot be modeled in the random walk approximation,

since the particle orbits will always intersect the orbits of the inner planets in the same way

if there are no close encounters. Secondly, even small changes to the Kozai cycles can have a
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major impact on the distribution function, since the distribution function of particles bound

to the solar system by weak interactions in the Sun is dominated by these pure Kozai cycles,

which typically have the longest lifetimes of any population of particles in the toy model

solar system. Therefore, it will be important to simulate, in the full solar system, orbits

that would have been pure Kozai cycles in the toy solar system.

Jupiter-Crossing Particles

Before discussing the effects of other planets on Jupiter-crossing particles, I will summarize

the main points of the Jupiter-crossing distribution function. In both the weak scattering

and gravitational capture simulations, the distribution functions were for the most part set

by t ∼ 107 yr, with some additional growth from long-lived particles in both simulations.

For the weak scattering simulation, most of the growth at later times resulted from a small

percentage of Jupiter-crossing particles having interactions with mean motion resonances.

The distribution of particles captured by gravitational interactions with Jupiter is similar

to the conservative scenario of Gould & Alam (2001) for small (v < 30 km s−1) geocentric

speeds, and between the unbound distribution function and the conservative scenario for

higher speeds, even though some of the Jupiter-crossing particles experience periods of

Kozai behavior.

If the other planets can boost the number of particles captured gravitationally in the

solar system or if even a small percentage (. 1%) of the Jupiter-crossing particles could

have their lifetimes extended, tlife � 107 yr, the distribution function of Jupiter-crossing

particles could rise dramatically. To determine how many WIMPs each planet will capture

from the halo, consider the following argument. In order for a halo particle of energy E to

be captured, the energy change resulting from the encounter must be of order

δE ∼ E. (6.14)
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From Eq. (6.4), one has an approximate expression for the change in heliocentric speed δv,

such that

δE = vδv ∼ GMP

b
. (6.15)

Since the particle energy E ∼ v2, one finds that the maximum possible impact parameter

for which a particle may be captured in the solar system by a planet P is

b ∼ GMP

v
. (6.16)

Since the gravitational cross section goes as ∝ b2, we find that the cross section for a particle

to be bound to the solar system by an encounter with planet P is

σbound ∝M2
P . (6.17)

Since Jupiter is the largest planet in the solar system by a factor of ∼ 3, it will capture at

least ∼ 10 times more that any other planet. Therefore, I expect that capture directly from

the halo by the other planets will produce only a small increase in the bound distribution

function.

To estimate the impact of the other planets on the lifetimes and distribution of Jupiter-

crossing, I will sketch Gould (1992)’s random walk approximation to the problem. In the

absence of resonances, the effects of the other planets in the solar system can be approxi-

mated in the random walk regime. Later, I will address the fact that there are numerous

mean motion, secular, and Kozai resonances in the full solar system. Recall from the dis-

cussion either in Sections 1.4.2 and 2.3 that during two-body encounters of a particle with a

planet, the center-of-mass speed u of the particle does not change but its direction θ relative

to the planet’s direction of motion will change. Gould (1988, 1992) finds that the random

walk rms change in the direction of motion is

〈(∆θ)2〉 ∼ 6 ln Λ

(
MP

M�

)2 (vP

u

)5
γ−1

(
t

yr

)
, (6.18)

where ln Λ ∼ 10 is the Coulomb logarithm, vP is the circular speed of a planet about the

Sun, and γ ∼ 1 except for orbits near the escape velocity, for which γ diverges (see Gould,
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1988, for a more precise definition). There are several things to note in this equation.

First, the timescales for 〈(∆θ)2〉 ∼ 1 depend sensitively on the mass of the planet doing

the perturbing. Secondly, if the planet-centric speed of a particle is small, it diffuses very

rapidly in θ. This means that the particles will diffuse rapidly in both energy and angular

momentum,

E =
1

2
|u + vP |2 −

GM�

aP
(6.19)

J = aPu

[(
cos θ +

vP

u

)2
+ sin2 θ cos2 φ

]
. (6.20)

In a toy model solar system containing just Jupiter, in the absence of resonances, par-

ticles diffuse in the solar system on timescales of

t ∼ 10−2γ

(
M�

MJ

)2 (
u

vJ

)5

yr, (6.21)

which is of order ∼ kyr−Myr unless an orbit is near the escape velocity. In both the weak

scattering and gravitational capture simulation, I did see such fast spreading of the WIMPs

in phase space, in spite of resonances. However, in a solar system with just Jupiter, the

geocentric speeds of Jupiter-crossing particles are restricted 8.8 km s−1 < u. In order to

diffuse particles onto smaller geocentric velocity, another mechanism is required. Gould

(1992) found that diffusion timescales for the Earth and Venus are shorter than or of order

the age of the solar system for small planet-centric speeds. The Earth cannot, of course,

change the geocentric speeds of the particles. However, it can change their directions pro-

vided that u . 27 km s−1 (the speed at which the diffusion timescale is ∼ tSS . Venus

can change the geocentric speeds of particles that have small Venus-centric speeds, and in

particular can populate orbits with geocentric speed u < 8.8 km s−1, which the Earth can

then diffuse in the θ−direction. Gould (1992) estimated that the density of bound particles

with geocentric speeds u < 27 km s−1 should be approximately the same as the free space

density, but that the density would be lower at higher speeds since the Earth cannot diffuse

particles efficiently for u > 27 km s−1. Therefore, the gravitational interactions between

the inner planets and the WIMPs might increase the lifetimes of some of the originally

Jupiter-crossing particles.
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There are two major caveats to this sort of argument. First, particles may be rescat-

tered in the Sun, which would decrease the lifetimes of the diffused particles. This point

was crudely addressed by Lundberg & Edsjö (2004), who excluded particles from the distri-

bution function after the first passage through the Sun (see Section 1.4.2), finding that the

distribution function is barely larger than the bound distribution function I found in Section

5.1.2. If they neglected scattering in the Sun, they found that the distribution function was

a factor several greater that what I found in Section 5.1.2, and that it was approximately

described by the free space distribution function. The Sun has an optical depth τ � 1

for any spin-dependent or spin-independent cross section consistent with current exclusion

limits, so the distribution function may still be a factor of a few larger than that in Section

5.1.2, although the exact size of the distribution function will depend on the optical depth

in the Sun and the type of elastic scattering that dominates in the Sun.

The second major caveat is that there will be numerous possible mean motion, secular,

and Kozai resonances in the full solar system. The size of the distribution function depends

crucially on whether the presence of the extra resonances decreases particle lifetimes (for

example, by driving particles into the Sun via Kozai or quasi-Kozai cycles), or if WIMPs can

be captured for long times in any one of the resonances. For example, in the examination of

six near-Earth asteroid orbits, Michel & Thomas (1996) found that asteroids simultaneously

in mean motion resonances with either the Earth or Venus, and a Jupiter-dominated Kozai

cycle, were protected from close encounters with the Earth on timescales ∼ 105 −106 years.

It is conceivable that there exists a long lifetime tail to this protection mechanism. The dis-

tribution function will be very sensitive to the fraction of particles originally captured onto

Jupiter-crossing orbits (either by weak interactions or gravitational capture) that survive

tlife & 109 yr. It is hard from the outset to tell how much the various resonances will affect

the distribution function.

Discussion

There are several key points to the discussion above:
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• It is unlikely that the presence of the other planets in the solar system will either cause

more particles to be pulled out of the Sun by weak scattering or out of the Galactic

halo by gravitational interactions than in the toy solar system. This means that the

only way to increase the bound distribution function is to extend the lifetimes of those

particles that are already captured onto relatively long-lived orbits, or to smear those

orbits into parts of velocity space not allowed in the toy model solar system.

• For capture by weak scattering in the Sun, it is most important to focus on the Kozai

cycling and Jupiter-crossing populations. If the inner planets can move particles off

of pure Kozai orbits on timescales shorter than the age of the solar system, the bound

distribution function may be significantly altered, although it is not clear how the

lifetime distribution would be affected. The lifetime distribution could be skewed

high if the planets act to pull the orbits out of the Sun even more than Kozai cycles

do, but it could be skewed low if the planets push the perihelia deep into the Sun.

For the Jupiter-crossing particles, it will be crucial to determine how fast the inner

planets can diffuse orbits, and how much the diffusion will be disrupted or altered by

the presence of the many resonances that exist in a realistic solar system. This latter

point is also crucial for the case in which particles are captured directly from the halo

by gravitational interactions with the planets.

• Given the points above, it is unlikely that the bound distribution function in the full

solar system will be more than a factor of a few above the bound distribution function

in the toy solar system. Therefore, the main result from my thesis that I expect will

hold in the true solar system is that the bound distribution function will not completely

overwhelm the halo distribution function, as predicted by Damour & Krauss. It would

be interesting to know how much the inner planets can pump particles into portions

of velocity space forbidden in the toy model solar system, especially for low geocentric

speeds. It would also be interesting to explore how this would depend on the optical

depth in the Sun.
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What are the implications for either direct or indirect detection? The prospects are

grim in the case of WIMP annihilation in the Earth. Even if the low speed distribution

function is similar to the free space distribution function (which has a factor of several more

bound particles than in the toy model solar system), it is unlikely that IceCube will be able

to resolve a signal for mχ & 100 GeV (see Figure 5.31), even if the spin-independent cross

section is just below the XENON10 limit, the halo number density of WIMPs is a factor of

two or three greater than the fiducial value, or if a significant number of events are generated

in the detector volume. As indicated by Figure 2.1, limits on the spin-independent cross

section are expected to get dramatically better in the next decade. If these experiments

do not find a signal, it is unlikely that any reasonable neutrino telescope will ever see

annihilation products from the Earth, even if the distribution function is boosted by large

long lifetime tails resulting from resonances in the solar system.

The prospects for direct detection are brighter. If the number density of bound particles

increases by a factor of several over what is found in this thesis, then bound particles may

become an interesting signal (or an important systematic!) in direct detection experiments.

Because of this prospect, it is worthwhile to examine the orbits in a full solar system,

although it will require careful selection of initial conditions of particle orbits and a large

amount of CPU time in order to have a good statistical sample of the various effects in the

solar system. The integration methods of Chapter 3 should be extendable to a full solar

system. In fact, given that the IAU has decided that there are eight planets about our Sun,

the integration in a full solar system should only take about twice as long as the case of a

one-planet system since the code is completely vectorized, all else being equal. Integration

of particles in the full solar system is doable and should be done (by me).

6.2.3 Other Applications of the Integration Code

There are other types of problems that may be addressed using the numerical methods de-

veloped in this thesis. These methods are applicable in problems for which the gravitational

field is dominated by a few objects on regular orbits or an external gravitational field, and
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for which the “test particles” have negligible self-interaction.

Oort Cloud

The existence of the Oort cloud (Oort, 1950), a cloud of ∼ km-sized objects with distances

r ∼ 103 − 105 AU from the Sun, is inferred from the distribution of long-period comets

(with periods greater than 200 yr). The Oort cloud is thought to have originated from

debris left over from planet formation (r ∼ 4 − 40 AU), and to have reached its current

configuration by the combined effects of the outer planets (interactions with which pump

up the semi-major axes) and passing stars, molecular clouds, and the Galactic tide (which

primarily alter the distribution of perihelion distances; see, e.g., Heisler & Tremaine, 1986;

Duncan et al., 1987; Dones et al., 2004). Long-period comets are thought to originate in the

“outer” Oort cloud (a & 20, 000 AU), a spherical shell of comets, while a posited “inner”

Oort cloud is significantly flattened in the plane of the solar system. Comets from the inner

Oort cloud are not observed to pass near the Earth because the Earth sits in the empty loss

cone of the inner Oort cloud (Dones et al., 2004; Tremaine, 2005).

There are a number of interesting and unsolved problems concerning the formation and

evolution of the Oort cloud that may be addressed using the codes in this thesis. Here,

I will highlight two particular problem. Recently, two comets have been observed with

estimated perihelia outside of Neptune’s orbit, and with semi-major axes that place these

objects in the innermost part of the Oort cloud (Gladman et al., 2001; Brown et al., 2004).

However, the origin of these objects is not well understood (Morbidelli & Levison, 2004).

Using my code, I can integrate the orbits of these objects backwards in time, including the

effects of the planets, other stars, Galactic tides, and molecular clouds, to constrain theories

for the origin of such objects. Secondly, it has been shown that the passage of molecular

clouds near the solar system reduces the lifetimes of comets in the outer Oort cloud. It

is not clear if mass loss in the outer Oort cloud is consistent with the current observed

rate of long-period comet passages through the inner solar system, or if some mechanism is

required to continuously refill the outer Oort cloud. With my code, I can simulate billions of
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comet orbits under the influence of various types of perturbers and constrain theories on the

outer Oort cloud. Both problems are well-suited to my code: the Oort cloud comets have

negligible self-interaction, and it is straight-forward to include the perturbing potentials in

the code.

Nuclear Star Clusters

Some of the methods developed in this thesis may, with some modification, be used to

study secular instability in nuclear star clusters about supermassive black holes (SMBH).

Nuclear star clusters are ubiquitous (estimated to be in ≈ 50−75% of local galaxies), small

(with masses Mnuc ≈ 0.003Mbulge, where Mbulge is the mass of the galaxy bulge; and sizes

of order ∼ pc −10 pc) clouds of stars surrounding galactic centers (see Merritt, 2008, and

references therein). In the Milky Way, the nuclear star cluster is estimated to have a mass

Mnuc ≈ 1.5 × 106M�. Most galaxies have central SMBH (Magorrian et al., 1998), large

enough such that they dominate the gravitational potential of much of the surrounding

nuclear star cluster. Therefore, the evolution of the nuclear star clusters will be dominated

by the SMBH. In particular, the presence of the supermassive black hole greatly increases

the relaxation time tr of cluster, and prevents core collapse on timescales greater than the

age of the universe.

Most work on nuclear star clusters has focused on two regimes: collisionless, where

tr > 1010 yr; and collisional, where tr < 1010 yr. In the collisionless regime, two-body

relaxation in the cluster has not had time to significantly modify the density of stars near

the SMBH. Therefore, the distribution of stars near the SMBH may retain some hints evo-

lution of the central regions of galaxies (Merritt, 2006). For example, binary black hole

mergers tend to force the density of stars near the final SMBH to be core-like instead of

cusp-like. However, these collisionless systems, while they appear to be dominant in the

local universe (Merritt, 2006), are difficult to resolve due to the very small (∼ 1 − 10 pc)

radii of the nuclear star clusters. In the Local Group, nuclear star clusters (including in the

Milky Way) appear to be in the collisional regime. In this case, two-body relaxation should
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be effective in forcing the nuclear star cluster to a steady state. The distribution function

of stars within the sphere of influence of the black hole goes as f(E) ∝ |E|1/4 (resulting in

a stellar number density n(r) ∝ r−7/4) except for small angular momenta (Bahcall & Wolf,

1976; Lightman & Shapiro, 1977; Cohn & Kulsrud, 1978). Recent N -body simulations have

confirmed this result, which was originally based on solutions to the Fokker-Planck equation

(Baumgardt et al., 2004; Preto et al., 2004). If the perihelion of a star’s orbit lies within

the radius rt at which stars become tidally disrupted by a SMBH of mass MSMBH , the

star is lost. Therefore, a particle with angular momentum J2 < 2Er2t + GMSMBHrt, is

lost within one orbital period. However, two-body relaxation can only refill orbits of such

angular momenta on timescales of order the relaxation time unless the energy of the stellar

orbit is high enough that a star can be perturbed onto a low angular momentum orbit in one

crossing of the nuclear star cluster. Therefore, at low energies and low angular momenta,

there exists a “loss cone” where the distribution function vanishes.

This last point is important for the following reason. Tremaine (2005) has demonstrated

that the self-gravitation of nuclear star clusters can induce secular precession of orbits on

timescales tsec ∼ tdynMSMBH/(Nm
2), where tdyn is the dynamical time of the system, N

is the total number of stars in the cluster, and m is the mass per star. In general, tsec � tr.

Moreover, Tremaine showed that flattened systems with empty loss cones are unstable to

secular modes, while secular modes are only neutrally stable in spherical systems. There-

fore, secular perturbations may be more important in shaping the evolution of nuclear star

clusters than two-body relaxation. It would be good to gauge the effect of secular perturba-

tions using N -body simulations. However, current direct N -body technology cannot resolve

the loss cone. Moreover, current direct N -body codes must treat close encounters of stars

with the SMBH separately from the rest of the integration. In addition, current schemes to

handle close encounters are not expected to work if the ratio MSMBH/m & 106.

My code may speed up N -body codes in the following ways. First, close encounters of

stars with the SMBH can be treated with a map, as in Section 3.1.3, assuming that tidal

forces from the other stars in the cluster are unimportant for small separations between
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a star and the SMBH. General relativistic effects can easily be incorporated in the map.

Finally, it may be useful to use the adaptive time step sympectic integrator (although per-

haps to higher order than the Verlet scheme discussed in Section 3.1.1) instead of current

symplectic mappings. This may be especially useful for resolving the loss cone, since parti-

cles in or near the loss cone may be on highly eccentric orbits. The main difference between

integrations in this system and integrations of WIMPs in the solar system is that it will be

necessary to include the two-body interactions of stars in order to model the stellar cluster

self-consistently.



Appendix A

The 1-d Velocity Dispersion of

Galactic WIMPs in the Solar

Neighborhood

Let us consider the form of the distribution function of the Milky Way’s dark matter halo.

If one assumes that the phase-space distribution of the dark matter halo is isotropic in

velocity space, it can be shown by the Jeans theorem that the distribution function should

only depend on energy E (Binney & Tremaine, 1987), and that any non-negative function of

E is a valid distribution function for the system. If it is assumed in addition that the dark

matter distribution is spherically symmetric, then by either specifying both the number

density and the gravitational potential as a function of radius, or by specifying the number

density as a function of the potential, one can find a unique distribution function f(E) to

describe the halo. One can use either the potential and density information (via the Jeans

equation) or the distribution function (by taking velocity moments of the distribution) to

specify the dark matter velocity dispersion σ, the RMS velocity component along a given

direction.

In our Galaxy, the circular velocity curve is constant from a radius much smaller than

the orbital radius of the Sun to at least r ∼ 60 kpc (Xue et al., 2008). Zaritsky et al. (1993)
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show that the velocity curves of spiral galaxies similar to the Milky Way are flat out to

r ∼ 200 kpc. Since

v2
c (r) = r

dΦ

dr
(A.1)

for a spherically symmetric system, the potential of the Galaxy has the form

Φ(r) = v2
c log(r) + Φ0, (A.2)

where Φ0 is a constant. I have ignored the fact that the Galactic disk is, as the name would

imply, not spherically symmetric. However, the spherical approximation is good enough for

this argument. If the dark matter is distributed as a power law,

n(r) =
ρWIMP

mWIMP
∝ r−β, (A.3)

where ρWIMP is the WIMP mass density, then one can show (e.g., by solving Eq. 4-140 in

Binney & Tremaine, 1987) that for the potential (A.2), the distribution function of the halo

is Maxwellian,

f(E) =
n0

(2πσ2)3/2
e−E/σ2

(A.4)

=
n0

(2πσ2)3/2
e−[ 1

2
v2+Φ(r)]/σ2

, (A.5)

which is of the same form as the dark matter distribution function given in Eq. (2.1). Here,

n0 is a constant and v is the Galactocentric particle speed. The velocity dispersion σ is

constant for this gravitational potential–density pair. The local dark matter density can be

recovered by integrating Eq. (A.4) over velocity,

n(r) = n0e
−Φ(r)/σ2

. (A.6)

One can then relate the velocity dispersion to the power law index of the density by setting

Eqs. (A.3) and (A.6) equal to each other, finding

r−β ∝ e−Φ(r)/σ2
(A.7)

∝ e−(v2
c /σ2) log(r) (A.8)

= r−v2
c/σ2

. (A.9)
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Therefore,

σ =
vc√
β
. (A.10)

This relation holds specifically for logarithmic gravitational potentials (which appears

reasonable for our Galaxy) and power law densities. Cosmological dark matter simulations

(Navarro et al., 1997, usually abbreviated as NFW; Moore et al., 1998) suggest that the

dark matter halo ought to have a double-power law number density,

n(r) =
ns

(r/rs)
α [1 + (r/rs)

γ ](3−α)/γ
, (A.11)

with α in the range α = 1 (NFW; γ = 1) to α = 1.5 (Moore; γ = 1.5). The quantities ns

and rs are the scale number density and scale radius, respectively. Adiabatic contraction

of the halo during baryonic infall, an effect that is not included in the NFW or Moore

simulations, may increase the inner slope to α ≈ 2 (Gnedin et al., 2004). All simulations

demonstrate that n(r) ∝ r−3 at large r.

Technically, to find the velocity distribution as a function of radius in these models, one

should solve Binney & Tremaine’s Eq. (4-140) for f(E) using the density profile (A.11).

However, simulations show that the phase space density of v is approximately described

by a Maxwell-Boltzmann distribution at the solar circle, so over a limited range of radii,

a single power law approximation is reasonable, n(r) ∝ r−β (Moore et al., 2001; Helmi

et al., 2002). In this case, Eq. (A.4) is a local approximation to the distribution function.

Therefore, it is acceptable to model the local dark matter distribution as a Gaussian with

the velocity dispersion described by Eq. (A.10).

Using this approximation, β = α for r/rs � 1, β = 3 for r/rs � 1, with intermediate

values in between those two extrema. If the Sun is located well within the scale radius in

the NFW case, then β = α = 1, and σ = vc. If the distance to the Sun from the center of

the halo is much greater than the scale radius, then β = 3, so σ = vc/
√

3. I compromise by

using the intermediate case, r ∼ rs, so β ≈ 2 and

σ = vc/
√

2. (A.12)



Appendix B

WIMP Elastic Scattering

B.1 Spin-Independent Scattering

For particle physics models of dark matter, the general spin-independent (“SI”; scalar)

scattering cross section has the form (Jungman et al., 1996; Hooper & Profumo, 2007):

dσSI

dQ
=

2mA

πg2
A

[Zfp + (A− Z)fn]2 F 2
SI(Q), (B.1)

where Q is the energy transferred from the WIMP to a nucleus of mass mA (with atomic

mass A and charge Z) during the scatter, gA is the relative velocity between the particles,

fp and fn are the proton and neutron effective couplings to the WIMP, and FSI(Q) is

a nuclear form factor. The nuclear form factor used in this set of calculations is of the

standard exponential form,

FSI(Q) = e−Q/2QA , (B.2)

where the coherence energy is

QA =
1.5~

2

mAR
2
A

, (B.3)

and the coherence length (the radius of the nucleus A) is set to

RA = 1 fm[0.3 + 0.91(mA/(GeV/c2))1/3]. (B.4)
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The nuclear form factor quantifies the extent to which the WIMP interacts coherently with

the nucleus as a whole (if the de Broglie wavelength of the nucleus is small), or incoherently

with the nucleons individually. A consequence of the incoherence of the nuclear interaction

is that the ∝ A3 enhancement of the differential cross section is mitigated for large energy

transfers.

It is often more convenient to use the center-of-mass differential cross section. Using the

functional form of the energy transfer

Q = 2
µ2

A

mA
g2
A

(
1 − cos θ

2

)
, (B.5)

where

µA =
mAmWIMP

mA +mWIMP
, (B.6)

the differential cross section is

dσSI

dΩ
=

1

2π

dQ

d(cos θ)

dσ

dQ
(B.7)

=
1

2π

µ2
A

mA
g2
A

(
dσ

dQ

)
(B.8)

=
1

4π

4

π
µ2

A [Zfp + (A− Z)fn]2 F 2(Q) (B.9)

=
σSI

A F 2(Q(cos θ))

4π
. (B.10)

I have parameterized the strength of the interaction by σA. If fp = fn, which is often a

good approximation for both supersymmetric and UED models,

σSI
A =

4

π
µ2

AA
2f2

n, (B.11)

so that the strength of the coupling between a nucleus and the WIMP depends only on

the atomic number of the nucleus. This coupling can also be parameterized in terms of the

strength of the WIMP-proton (or -neutron) cross section:

σSI
A =

µ2
A

µ2
p

A2σSI
p , (B.12)
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which is useful since experimental constraints on the spin-independent cross section are

reported in terms of the WIMP-nucleon cross section. In the limit of high WIMP mass,

µA → mA (B.13)

µp → mp (B.14)

σSI
A → m2

A

m2
p

A2σSI
p (B.15)

≈ A4σSI
p , (B.16)

where the last approximation can be made since mA ≈ Amp.

B.2 Spin-Dependent Scattering

The likely WIMP candidates for both the MSSM (χ particle) and UED (B(1)) theories

can have elastic axial-vector interactions with quarks, via squarks in the MSSM or the

lightest Kaluza-Klein excitation of quarks q(1) in UED models. In both cases, the spin-

dependent (SD) WIMP interaction with a nucleus of atomic numberA can be parameterized

as (Jungman et al., 1996; Servant & Tait, 2002)

dσSD

dQ
= α× 2mA

πg2
A

Λ2J(J + 1)F 2
SD(|q|), (B.17)

where

α =





8G2
F MSSM

1
6

g′4

(m2
B(1) −m2

q(1))
2 UED

(B.18)

parameterizes the coupling in each theory. Here, g′ is the coupling constant for the B boson

in electroweak theory, and mB(1) and mq(1) are the masses of the B(1) and q(1) particles

respectively. The other quantities in Eq. (B.17) depend on nuclear properties. Here J is

the total angular momentum of the nucleus, and

Λ =
1

J
[ap〈Sp〉 + an〈Sn〉] , (B.19)
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where an and ap describe the WIMP couplings to the neutron and proton, and 〈Sn〉 and

〈Sp〉 are the spin expectation values for the neutrons and protons within the nucleus. The

couplings an and ap are derived from specific WIMP models, while the spin expectation

values must be calculated using detailed nuclear physics models (e.g., Dimitrov et al., 1995;

Jungman et al., 1996; Ressell et al., 1993; Ressell & Dean, 1997), and calculations using dif-

ferent techniques often yield different results. The function FSD(|q|) is the spin-dependent

nuclear form factor as a function of the momentum transfer |q|. Its form must be carefully

calculated for each nucleus of interest (Gondolo, 1996, and references therein).

There are several important differences between the form of the spin-dependent and

spin-independent cross sections that have major implications for detection experiment de-

sign. The first point is that nuclei with even numbers of protons and neutrons will have

zero spin-dependent interactions with WIMPs. Secondly, the spin-dependent cross section

has a much weaker dependence on the atomic mass than the spin-independent cross section.

This is apparent if Eq. (B.17) is written in the same form as Eq. (B.10),

dσSD

dΩ
=

1

2π

dQ

d cos θ

dσSD

dQ
(B.20)

=
1

2π

µ2
Ag

2
A

mA

2mA

πg2
A

J(J + 1)αΛ2F 2
SD(|q|) (B.21)

=
1

4π
σSD

A F 2(|q|), (B.22)

where

σSD
A =

4

π
µ2

AJ(J + 1)αΛ2. (B.23)

In the limit that mWIMP � mA,

σSD
A ∝ A2, (B.24)

unlike

σSI
A ∝ A4 (B.25)

for the spin-independent case. Therefore, even if σSD
p > σSI

p or σSD
n > σSI

n , the spin-

independent cross section may dominate for heavy nuclei. The spin-dependent cross section
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could be large if J scaled with A (since σA ∝ J2), but this is not the case for heavy nuclei.

Note that, in contrast to predictions for spin-independent scattering, the spin-dependent

WIMP-proton and WIMP-neutron cross sections are generally not the same to within a few

percent.
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