The Shape and Scatter of The Galaxy Main Sequence for Massive Galaxies at Cosmic Noon

Sydney Sherman¹[⋆], Shardha Jogee¹, Jonathan Florez¹, Steven L. Finkelstein¹, Robin Ciardullo^{2,3}, Isak Wold⁴, Matthew L. Stevans¹, Lalitwadee Kawinwanichakij^{5,6,7}, Casey Papovich^{6,7}, Caryl Gronwall^{2,3}

We present the main sequence for all galaxies and star-forming galaxies for a sample of 28,469 massive $(M_{\star} \ge 10^{11} M_{\odot})$ galaxies at cosmic noon (1.5 < z < 3.0), uniformly selected from a 17.5 deg² area (0.33 Gpc³ comoving volume at these redshifts). Our large sample allows for a novel approach to investigating the galaxy main sequence that has not been accessible to previous studies. We measure the main sequence in small mass bins in the SFR-M* plane without assuming a functional form for the main sequence. With a large sample of galaxies in each mass bin, we isolate star-forming galaxies by locating the transition between the star-forming and green valley populations in the SFR-M_{*} plane. This approach eliminates the need for arbitrarily defined fixed cutoffs when isolating the star-forming galaxy population, which often biases measurements of the scatter around the star-forming galaxy main sequence. We find that the main sequence for all galaxies becomes increasingly flat towards present day at the high-mass end, while the star-forming galaxy main sequence does not. We attribute this difference to the increasing fraction of the collective green valley and quiescent galaxy population from z = 3.0 to z = 1.5. Additionally, we measure the total scatter around the star-forming galaxy main sequence and find that it is $\sim 0.5 - 1.0$ dex with little evolution as a function of mass or redshift. We discuss the implications that these results have for pinpointing the physical processes driving massive galaxy evolution.

z~2 星形成銀河をnon-parametricに選択し、Main sequence (MS) を議論

- 宇宙の星形成史のピークであるz~2は(massive) 銀河が星形成を終えて quiescentへ移行し始める時代。
- 銀河のMS (slope, normalization, scatter) は星形成史 (quench, merging) を表すが、 MSの評価方法は様々で、何らかの仮定を置くことが多い。
- 大規模サンプルから仮定無しでmain sequenceを定義する手法を確立した。
 - NEWFIRM K_c-selectedカタログ (17.5deg²@SDSS stripe82, K_c~22.4AB) と多色測 光データから28469個 (既存の~40倍) の銀河 (z=1.5-3.0, M_c>10¹¹M_{sun}) を抽出。

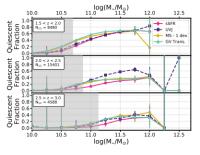
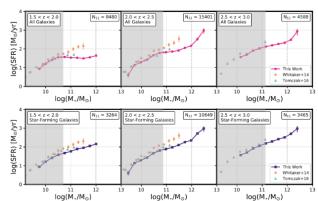
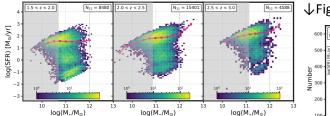



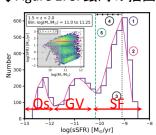
Figure 3. The quiescent fraction as a function of stellar mass determined ising the transition between star-forming and green valley galaxies to separate star-forming systems from the collective green valley and quiescent populations (green triangles). Also plotted are the results from Sherman et al pink circles), main sequence - 1 dex selected (gold pentagons), and UVJ tive consistent results across our three redshift bins spanning 1.5 < z < 3.0. Error bars represent Poisson errors. We emphasize that the results presented in this work focus on the mass range $M_{\star} = 10^{11}$ to $10^{12} M_{\odot}$, and that results above $M_{\star} = 10^{12} M_{\odot}$ (vertical dashed gray line) are unlikely to be robust. Insets on the upper left of each panel show the total number (N_{11}) of galaxies in our sample with $M_{\star} \ge 10^{11} M_{\odot}$

个Figure 3. Qs銀河の割合。


• Massiveほど高い → downsizing

个Figure 8. 他観測結果との比較。

Figure 9. シミュレーションとの比較。→


↓Figure 1. 全サンプルでのM_s-SFR分布。

•Massive endが(Qs,GV増加により)徐々にflatに。

arXiv.2105.03766

→Figure 7. 抽出したSF銀河のM_s-SFR分布 (MS)と分散。

- ・Massive endのFlat化は見られない→sSFRがあまり変わっていない。
- ・分散はMSの下側に偏っている→従来の対称的なGaussian仮定は×。 Above MSではgas depletion timeが短いというALMA結果とconsistent。

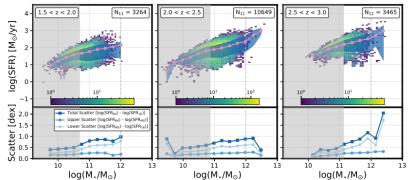
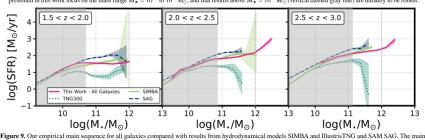



Figure 7. Top Row: The total scatter (blue shaded region) around the star-forming galaxy main sequence (pink) overlaid on the distribution of star-forming galaxies (2D histogram; colorbar indicates the number of galaxies in each 2D bin) in the SFR-M* plane. The upper (lower) bound of the blue shaded region is the 84th (16th) percentile of the SFR distribution in a given mass bin. Insets on the upper right of each panel in the top row show the number (N11) of galaxies in the star-forming population in our sample with $M_{\star} \ge 10^{11} \mathrm{M}_{\odot}$. Bottom Row: The total (squares), upper (circles), and lower (pentagons) observed scatter around the star-forming galaxy main sequence. The total scatter shows a modest increase with increasing stellar mass (less than a factor of three from $M_{\star} = 10^{11}$ to $10^{12} M_{\odot}$ in each redshift bin), and the total scatter is fairly constant across our three redshift bins from z = 1.5 to z = 3.0. In every redshift bin, the lower scatter is larger than the upper scatter by up to a factor of 3. Gray shaded regions represent masses below our 95% completeness limit. We emphasize that the results presented in this work focus on the mass range $M_{\star} = 10^{11}$ to $10^{12} M_{\odot}$, and that results above $M_{\star} = 10^{12} M_{\odot}$ (vertical dashed gray line) are unlikely to be robust

sequence for all galaxies from SIMBA is within a factor of ~ 1.5 of our empirical result and that from SAG is higher than our empirical result by up to a factor of \sim 3. SIMBA does not show a flattening at the highest masses by z=1.5, while SAG begins to show a flattening high-mass slope towards z=1.5. The main sequence for all galaxies from IllustrisTNG is lower than our empirical result by up to a factor of ~ 10 and shows a strong turnover at the highest masses a 2.0 < z < 3.0 that is not seen in our empirical result. Gray shaded regions represent masses below our 95% completeness limit. We emphasize that the results presented in this work focus on the mass range $M_{\star} = 10^{11}$ to $10^{12} M_{\odot}$, and that results above $M_{\star} = 10^{12} M_{\odot}$ (vertical dashed gray line) are unlikely to be robust

どの計算でもmassive銀河のSFRとflat化とが同時には再現されない。