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ABSTRACT

We present the main sequence for all galaxies and star-forming galaxies for a sample of 28,469 massive (M, > 10'"M;,) galaxies
< 3.0), uniformly selected from a 17.5 d632 area (0.33 Gpi:3 comoving volume at these redshifts).
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Our large sample allows for a novel approach to investigating the galaxy main sequence that has not been accessible to previous
studies. We measure the main sequence in small mass bins in the SFR-M, plane without assuming a functional form for the

main sequence. With a large sample of galaxies in each mass bin, we isolate star-forming galaxies by locating the transition
between the star-forming and green valley populations in the SFR-M., plane. This approach eliminates the need for arbitrarily
defined fixed cutoffs when isolating the star-forming galaxy population, which often biases measurements of the scatter around
the star-forming galaxy main sequence. We find that the main sequence for all galaxies becomes increasingly flat towards present
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Figure 1. The SFR-M, relation (2D histogram) and main sequence (pink cireles) for all galaxies in our sample. The main sequence is the average SFR in 13 "8

day at the high-mass end, while the star-forming galaxy main sequence does not. We attribute this difference to the increasing

fraction of the collective green valley and quiescent galaxy population from z =

3.0 to z = 1.5. Additionally, we measure the

total scatter around the star-forming galaxy main sequence and find that it is ~ 0.5 = 1.0 dex with little evolution as a function
of mass or redshift. We discuss the implications that these results have for pinpointing the physical processes driving massive

galaxy evolution.
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Gray shuded regions represent masses below our 95% completeness limit.
Error bars represent Poisson errors, We emphasize that the results presented

in this work focus on the mass range M, = 10'' 1o

10'*Mg, and that results

above My = 10'2M,, (vertical dashed gray line) are unlikely to be robust.
Insets on the upper left of each panel show the total number (N ) of galaxies

in our sample with M, > 10" M.
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Figure 9. Our empirical main sequence for all galaxies compared
sequence for all galaxies from SIMBA is within a factor of ~ 1.5 of our e

IMBA does not show a flattening at the highest masses by 1.5, while SAG begins to show a flattening high
sequence for all g s from TlustrisTNG is lower than our empiric by up to a factor of ~ 10 and shows a strong turnover at the highest ma
2.0 < z < 3.0 that is not seen in our empirical result, Gray shaded regions represent masses below our 95% completeness limit, We emphasize that the results
presented in this work focus on the mass range M, = 10! 10 10'*M_, and that results above M., = 101> M, (vertical dashed gray line) are unlikely to be robust.
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