McLean Seminar

Sec 7-7.2.1

7. Charge-coupled devices

• detector : convert electromagnetic energy into an electrical signal

CCD(charge-coupled device) : dominant

→consider more detail

7.1 THE ERALY YEARS7.1.1 Invention and development

- charge-coupling principle : invented in 1969
- · larger image-forming devices (100 \times 100 pixels) : introduced in 1973
 - \cdot 2048 \times 4096 pixels with no wires or structure on three sides
 - →now available
 - most observatories using CCD "mosaics" composed of many "close-butted" devices

Figure 7.1. A collection of CCDs including eight large-format $(2K \times 4K)$ devices butted together to form a 64-megapixel mosaic. Credit: Gerry Luppino.

 \cdot recognition the potential of CCDs in the early 1970s

 \rightarrow initiate a program for the development of large-area CCD imagers for Galileo mission to Jupiter in 1973 (JPL, NASA, TI Incorporated)

 \rightarrow Galileo spacecraft was launched in 1989 and success

 \cdot 1973~1979 : TI developed CCD arrays of 100 \times 160 pixels, 400 \times 400 pixels, 500 \times 500 pixels, 800 \times 800 pixels array

 \cdot testing and evaluation at JPL

 \cdot 1974 : image of the Moon by 20.3cm telescope with 100 imes 100 Fairchild CCD

 \cdot 1976 : first astronomical imagery with CCD on a professional telescope (61-inch telescope on Mt. Pigelow (Arizona))

• CCD images of Jupiter and Saturn using a special filter to pick out methane gas

 $\boldsymbol{\cdot}$ at the same time, NASA made contracts for the procurement of instruments for Space Telescope

 \cdot proposal for the inclusion of CCD cameras (low noise) on the Space Telescope was accepted

• Electro-optics Division of RCA (Radio Corporation of America) was working on CCDs

 \rightarrow began testing these devices in the late 1970s

 \cdot First, John Geary (Harvard) tried an unthinned devise on the 1.5m and 60cm telescopes on Mt. Hopkins

 \rightarrow splendid result

very first thinned backside-illuminated CCD was put on the telescope on Mt. Hopkins
 →remained for a decade

 \cdot TI chips evolved through a program of systematic development toward the goal of 800 \times 800 array

- major constraint : able to survive harsh radiation environment around Jupiter
 - "buried-channel" and "virtual-phase" CCD evolved
- 75,000 CCDs were manufactured

 \cdot other companies were also beginning to develop CCDs (1974~1977)

 \cdot Fairchild Semiconductor produced 100 \times 100 CCD in 1974

• Kitt Peak National Observatory (KPNO) began a program of development of CCDs

 \cdot Fairchild CCD201 and CCD202 image sensors (designed for TV applications) were capable of high performance

 \leftrightarrow serious impediment for astronomical work due to the interline transfer construction

• columns of picture elements were alternately light-sensitive and insensitive

 \rightarrow devices were half blind

• late 1970s : great frustration about the lack of access to CCD technology by the mainstream astronomical community

- development of Wide-Field/Planetary Camera(WFPC)
- \cdot many people were aware of the sensitivity and the scientific potential of CCDs
- little commercially available products
- \rightarrow other forms of less suitable solid-state imagers were tried
- \rightarrow appearance of 512 × 320 RCA CCDs in the late 1970s made relieve
 - first RCA CCDs : frontside-illuminated, poor response to blue light
 - \leftrightarrow soon, the thinned backside-illuminated CCDs appeared
 - outstanding sensitivity over a huge spectral range better than TI chips
 - \cdot weakness : 5-10 times noisier than the TI CCD
 - \rightarrow later RCA CCDs were much better

- early 1980 : unexpected source of astronomical CCDs appeared
 - Craig Mackay (Cambridge) : had been working on silicon vidicons
 - silicon vidicon : good spectral response, but noisy
 - \rightarrow need a very low noise amplifier design
- →work with GEC Hirst Research Centre designing metal oxide semiconductor (MOS) transistors (easily available)
 - GEC : had a very advanced CCD program
 - GEC CCDs : typically reported as 7 electrons
 - Craig designed a CCD drive system based on an existing vidicon

• 1981 : the number of independent astronomy groups CCD systems had grown from 5 to 20

- \cdot devices in use are only from TI, RCA, and GEC
 - $\boldsymbol{\cdot} \; \mathsf{GEC}: \mathsf{Iow-noise}$
 - \cdot RCA : high quantum efficiency

• TI : should have both properties \leftrightarrow problems with blue sensitivity and not available for sale \Rightarrow detailed studies of the TI chips \rightarrow advanced the understanding of CCDs and their optimization

• 1985 : most exciting prospect

• Tektronix Inc. produce scientific grade CCDs with large formats and outstanding performance

- initial goal : 512×512 array with good-sized pixels(0.027mm)
- final goal: 2,048 × 2,048 pixels
- ⇔large numbers of defects ("pockets") due to fabrication or processing problem
 - \rightarrow devices became unusable
 - \cdot collaborate with other parties and followed every effort
 - \rightarrow began to ship CCDs to customers (1988)
- CCD group was separated into Silicon Imaging Technologies, Inc. and supplied CCDs for SDSS

 \cdot the time of dry spell in CCD supplies

 \cdot Richard Aikens (founder of Photometrics Ltd.) contracted "silicon foundry" to produce a custom CCD with 516 \times 516 pixels

→outstanding success

• early 1990s

• Dick Bredhauer and his team at Ford Aerospace made a 4,000 × 4,000 CCD with 15um pixels

• Photometrics coted chemical phosphor (Metachrome II) which can be applied safely to CCD by vacuum sublimation

 \rightarrow improve the response to blue light

• 1988

· Lloyd Robinson constructed a large CCD suitable for spectroscopic applications ($400 \times 1,200$)

 \cdot EEV in UK began a thinning program and a mosaic construction program

Thomson-CSF in France

· developed a "buttable" version of their excellent low-noise front-illuminated device

 \cdot these approaches : a trend that has continued until now

 now, astronomers work directly with a silicon foundry and obtain customized CCDs

• Most astronomical developments : concentrate on forming mosaics of high yield formats, and optimizing the response at both ling and short wavelength

7.2 BASIC PRINCIPLES OF CCDs 7.2.1 Charge storage

· CCD : array of individual picture elements (pixels)

 \cdot pixel : absorb photons and utilize the energy to release an electron within the semiconductor

when making an imaging device

 \cdot don't want photon-generated electrons to move from the site where the original photons impact

 \cdot special electrostatic field are required to confine the electron within a pixel

next photon

need to create a storage region capable of holding many charges

 \rightarrow apply metal electrodes to the semiconductor silicon together with a thin (100nm) separation layer (silicon dioxide(electrical insulator))

 \rightarrow like a parallel-plate capacitor and store electrical charge

= MOS (metal oxide semiconductor) structure

• MOS

 \cdot apply voltage to the metal electrode \rightarrow electric field is generated inside the silicon slab

• when the material is p-type (usual case, holes are majority carriers)

• positive voltage on the metal gate

 \rightarrow repel the holes which are in the majority and generate a depletion region of charge carriers

absorb a photon in this region

→produce an electron-hole pair

 \rightarrow hole : driven out of the depletion region

electron : attracted towards the positively charged electrode

Figure 7.4. The development of a single metal oxide semiconductor (MOS) storage well, the basic element in a CCD, for different applied gate voltages.

 \cdot MOS capacitor : combination of two parallel-plate capacitors (oxide capacitor + silicon depletion region capacitor)

- ⇒capacitance
 - proportional to the area of the plates (electrodes)
 - inversely proportional to their separation
- \cdot control the voltage on the plate
 - \rightarrow change the depletion width, control the capacity to store charge
- depletion region : electrostatic "potential well" or "bucket" and collect many photo-generated charges
 - number of electrons stored Q = CV/e
 - e:charge on the electron 1.6×10^{-19} C, V:effective voltage,

C:capacitance $C = A\kappa\epsilon_0/d$ (parallel-plate formula, *A*:area of the pixel or gate electrode, *d*:thickness of the region, κ :dielectric constant of the SiO₂ insulator, ϵ_0 :permittivity of free space 8.85×10⁻¹² farad/m)

- \cdot voltage on the electrode increases \rightarrow depth of the well increases
 - $\boldsymbol{\cdot}$ other ways are needed to create sidewalls of the wall
- eventually, at a "threshold" voltage, the minority charge carriers (electrons for a p-type semiconductor) will be attracted to the electrode
 - \rightarrow form an inversion layer

- \cdot p-MOS capacitor's composition
 - · p-type (boron-doped) Silicon
 - 100nm thick thermally grown layer of SiO_2 (like a dielectric insulator)

• conductive (metallic) gate made of deposited polysilicon (silicon with randomly oriented crystal grains)

 \cdot apply a negative voltage to the gate when the silicon substrate is at ground potential \rightarrow highly conductive layer of holes accumulate at the Si – SiO_2 interface in a few nanoseconds

- = accumulation mode
- capacity per unit area of the oxide : $C_{OX} = \frac{\varepsilon_{OX}}{d} (F/m^2)$
 - d:thickness of the oxide insulator, $\varepsilon_{OX} = \kappa \varepsilon_0$:permittivity of SiO₂ 3.45×10⁻¹¹ F/m
- when there are two insulating layers (SiO₂, silicon nitride ($\varepsilon_{nit} = 6.63 \times 10^{-11} \text{ F/m}$)) capacities add in series $C_T = C_{OX}C_{nit}/(C_{OX} + C_{nit})$

 \cdot apply positive voltage to the gate

 \rightarrow holes are driven away from surface, and negatively charged boron ions are left

 \rightarrow create a depletion region with no mobile charge carriers

 \cdot the number of holes driven away in depletion mode = the number of positive charges on the gate electrode

 $Q_i = eN_A x_d$

 Q_i (C/m²):ionized acceptor charge concentration under the depleted gate

 x_d (m):depth of the depletion region

 N_A (atoms/m³):concentration of boron (acceptors)

e:numerical value of the charge on the electrons

• depletion region is non-conductive \Rightarrow acts like an insulator capacitance $C_{dep} = \varepsilon_{Si}/x_d$ ($\varepsilon_{Si} = 1.04 \times 10^{-10}$ F/m, dielectric constant~11.7) \Rightarrow gate capacitance in depletion mode is the series combination

- gate voltage : constant throughout its thickness (conductor)
 - \cdot voltage drop across the oxide layer
 - \rightarrow voltage in the depleted p-type silicon depend on the charge distribution
 - \rightarrow eventually drop to the ground potential of the substrate
 - \cdot variation of voltage(V), depth(x), Poisson's equation
 - $\rightarrow \frac{d^2 V}{dx^2} = -\frac{\rho}{\varepsilon_{Si}} \quad \rho:\text{charge density, origin}(x=0) \text{ is } \text{Si} \text{SiO}_2 \text{ interface}$ principle: $\rho = e[p + n + N_A + N_D]$

p:number density of free holes, *n*:number of free electrons,

 $N_A(\text{atoms/m}^3)$:number density of localized fixed ionized acceptors,

 $N_D(\text{atoms/m}^3)$: number density of fixed ionized donors

- $\boldsymbol{\cdot}$ electric field sweep away most free carriers in the depletion region
 - $\Rightarrow \rho = -eN_A$ (p-channel) (absence of holes \Rightarrow sign is negative)

$$\Rightarrow \frac{d^2 V}{dx^2} = \frac{e N_A}{\varepsilon_{Si}}$$

$$\cdot \frac{dV}{dx} = 0, \ V = 0(x = x_d)$$
$$\rightarrow V = \frac{eN_A}{2\varepsilon_{Si}}(x - x_d)^2$$

 \rightarrow most positive voltage occurs at Si – SiO₂ interface (x=0)

surface voltage: $V_s = \frac{eN_A}{2\epsilon_{Si}} x_d^2$, surface electric field: $E_s = \frac{eN_A}{\epsilon_{Si}} x_d$

• electric field: 0(metallic gate), $V_{OX}/d(oxide)$, decrease linearly to 0(depletion region)

• potential: constant(gate), drop by $V_{OX} = E_S d$ (oxide layer), decay quadratically from V_S to 0

 MOS capacitor in depletion mode: basic element of a surface channel CCD

gate voltage $V_G = V_{OX} + V_S = E_S d + V_S = \frac{eN_A x_d}{\varepsilon_{Si}} d + \frac{eN_A}{2\varepsilon_{Si}} x_d^2$

- photon-generated electrons collect at the surface
 →number of ionized acceptor atoms decreases
 →depletion region becomes smaller
- for fixed V_G , effective voltage drop V_Q at the gate

 $V_Q = V_G - \left(\frac{eN_e}{C_{OX}}\right)$ N_e :signal charge measured in electrons

charge storage capacity of the MOS capacity

= amount of charge required to bring the surface potential back to 0V

gate and substrate potentials are fixed

 \rightarrow signal electrons at $Si-SiO_2$ interface are shared between oxide and depletion capacitances

→capacitors are parallel

• change of surface potential (V_S)

$$\Delta V_S = -Q/(C_{OX} + C_{dep})$$
 Q:charge

• Cox dominates

$$\rightarrow Q \sim C_{\rm OX} \Delta V_{\rm S}$$

 \rightarrow full-well capacity $N_{\rm FW} = C_{\rm OX} V_S / e$

 \rightarrow there are disadvantages to collecting charge at $\rm Si-SiO_2$ interface and modified design is needed