4.

You have a CCD camera with a large field of view attached to a typical small telescope and you see images with small "tails" toward the edges of the field, what could be wrong?

- · images with small "tails" toward the edges of the field
 - \rightarrow coma aberration
 - off-axis effect
 - limit the image quality
- cause : secondary mirror

10. Using the information in Section 3.5 develop the RC design for the Keck 10m telescopes assuming a primary mirror diameter of 10m, a primary focal ratio of 1.75, a back focal length of 24% of the primary focal length, a final focal ratio of f /15, and a field of view determined by <0.5" astigmatism. Calculate the radii of curvature and conic constants of the primary and secondary mirrors and find the distance between them.

Primary mirror diameter
$$D_1$$
: 10m
Primary focal ratio F_1 : 1.75
Back focal length bfl : 0.24 f_1
Final focal ratio F : 15
astigmatism <0.5'' \rightarrow Field of view : ~20' (2 θ)
 $(AAS = \left(\frac{\theta^2}{2F}\right)[(m(2m+1)+\beta)/(2m(1+\beta))])$
 $f_1 = D_1 \times F_1 = 17.5[m]$
 $bfl = 0.24 \times f_1 = 4.2[m]$
 $f = D_1 \times F = 150[m]$
 $m = \frac{f}{f_1} = \frac{150}{17.5} \approx 8.57$
 $\beta = 0.24$
 $k = \frac{1+\beta}{m+1} = 0.13$

Figure 3.16. The main parameters involved in the design of a two-mirror telescope and their geometrical relationship to each other. Adapted from Schroeder (2000).

useful normalized parameters can be defined as follows:

$$\begin{split} k &= y_2/y_1 & \text{where } y_1 \text{ and } y_2 \text{ are the heights of the rays at the edge of the primary} \\ nd secondary, respectively; \\ \rho &= R_2/R_1 & \text{where } R_1 \text{ and } R_2 \text{ are the vertex radii of the curvature of the primary} \\ nd secondary mirror, respectively; \\ m &= -s'_2/s_2 & \text{transverse magnification of secondary;} \\ f_1\beta &= D_1\eta & \text{back focal distance: } \beta \text{ and } \eta \text{ are the back focal distance in units of} \\ the primary focal length f_1 and primary diameter D_1, respectively; \\ F_1 &= f_1/D_1 & \text{primary focal ratio;} \\ F &= f/D_1 & \text{the system focal ratio, where } f \text{ is the net focal length.} \end{split}$$

$$D_{2} = D_{1}[|k| + 2\theta F_{1}(1-k)] = 1.39[m]$$

$$s_{2} = F_{1}D_{2} = 2.43[m]$$

$$s'_{2} = FD_{2} = 20.8[m]$$

$$\begin{split} R_1 &= 2f_1 = 35[\text{m}] \\ R_2 &= 2f_2 = 2\frac{s_2 s'_2}{s_2 + s'_2} = 4.4[\text{m}] \\ K_1 &= -1 - \left[\frac{2(1+\beta)}{m^2(m-\beta)}\right] \approx -1.004 \\ K_2 &= -\left[\frac{m+1}{m-1}\right]^2 - \left[\frac{2m(m+1)}{m-\beta(m-1)^3}\right] \approx -1.644 \\ d &= f_1 - s_2 = 15[\text{m}] \end{split}$$

Table 3.3. Design parameters for a two-mirror aplanatic telescope.

Chosen parameter	Derived parameter	Comments
Primary diameter	D ₁ Collecting area	Light grasp ($\sim D^2$) Diffraction limit (λ/D)
Primary focal ratio	Primary focal length $f_1 = F_1 D_1$ Primary vertex radius $R_1 = 2f_1$	Size of dome Alignment tolerance
Back focal length	(bfl) $\beta = bfl/f_1$	Instrument volume Mirror support volume
Final focal ratio F	Magnification $m = F/F_1$ Effective focal length $f = mf_1$ Primary conic constant (K_1) Secondary conic constant (K_2) Aperture ratio k	Focus tolerance Plate scale From (m, β) From (m, β) From (m, β)
Field of view (2θ)	Secondary diameter D_2 Distance $s_2 = F_1D_2$ Separation of mirrors $d = f_1 - s_2$ Image distance $s'_2 = FD_2$ Secondary focal length f_2 from $f_2 = s_2s'_2/(s_2 + s'_2)$ Secondary vertex radius $R_2 = 2f_2$	For astigmatism (AAS) < $0.5''$ Use image quality criterion to set field of view radius θ