- 2 Calculate the f/number of a camera lens system required to match 24 µm pixels to 0.2" on the sky for a 10 m telescope. Comment on whether or not this would be challenging. What is the field of view for a 1.024×1.024 pixel detector?
 - pixel scale = 0.2("/pixel)
 - pixel size = $24(\mu m)$

$$\rightarrow$$
plate scale = $\frac{\text{pixel scale}}{\text{pixel size}} = \frac{0.2}{24} = 0.0083(''/\mu\text{m}) = 8.3(''/\text{mm})$

• plate scale ("/mm) =
$$\frac{206265}{\text{focal length(mm)}}$$

$$\rightarrow \text{focal length} = \frac{206265}{8.3} = 2.5 \times 10^4 \text{(mm)} = 25 \text{(m)}$$

$$\rightarrow \text{f/number} = \frac{\text{focal length}}{\text{diameter}} = \frac{25 \text{(m)}}{10 \text{(m)}} = 2.5$$

$$\rightarrow$$
f/number= $\frac{focal length}{diameter} = \frac{25(m)}{10(m)} = 2.5$

- →not challenging (be able to make the lens that have this f/number)
- FoV for 1024 × 1024 pixel detector

$$\rightarrow$$
 (1024×0.2)"×(1024×0.2)" \rightarrow 204.8"×204.8"

$$\rightarrow$$
3.41'×3.41'

8 What is the required scan length of an FTS working at a wavelength of $10 \,\mu m$ in the mid-infrared if the required resolving power is R = 100,000?

scan length : $\Delta x(cm)$

wavelength: $\lambda = 10$ um

resolving power: $R=4 \Delta x/\lambda = 100,000$

 $\rightarrow \Delta x = R \lambda / 4 = 100,000 \times 10(um) / 4 = 25(cm)$