Morphology and Molecular gas fractions of local luminous infrared galaxies as a function of infrared luminosity and merger stage

K. L. LARSON^{1,2}, D. B. SANDERS^{1,3}, J. E. BARNES^{1,4}, C. M. ISHIDA^{1,5}, A. S. EVANS^{6,7,8}, V. U⁹, J. M. MAZZARELLA², D.-C. KIM⁷, G. C. PRIVON^{10,11}, I. F. MIRABEL^{12,13}, AND H. A. FLEWELLING¹

Background

- LIRGs have strong IR emission due to star formation and active galactic nuclei (AGN)
- Galaxies increase in mass over time through interactions and mergers
- Observations show that all ULIRGs and many LIRGs in the local universe involve strong tidal interactions and mergers between molecular gas-rich disk galaxies
- LIRG morphology studies are important for determining the role of interactions and mergers in the evolution of IR luminosity and molecular gas fraction (MGF)
- The total amount of molecular gas is readily available fuel to form new stars

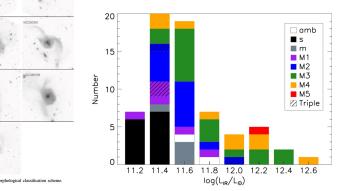
Visual Morphological Classification Scheme

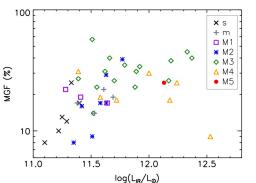
- Single galaxy (s): No current sign of an interaction or merger event.
- Minor merger (m): Interacting pairs with estimated mass ratios >4:1.
- Major merger—stage 1 (M1): Galaxy pairs with $\Delta V < 250 \text{ km s}^{-1}$ and $n_{\text{sep}} < 75 \text{ kpc}$, which have no prominent tidal features. These galaxies appear to be on their initial approach.
- Major merger—stage 2 (M2): Interacting galaxy pairs with obvious tidal bridges and tails (Toomre & Toomre 1972) or other disturbances consistent with having already undergone a first close passage.
- Major merger—stage 3 (M3): Merging galaxies with multiple nuclei. These systems have distinct nuclei in disturbed, overlapping disks, along with visible tidal tails.
- Major merger—stage 4 (M4): Galaxies with apparent single nuclei and obvious tidal tails. The galaxy nuclei have $n_{\text{sep}} \leq 2$ kpc.
- Major merger—stage 5 (M5): Galaxies which appear to be evolved merger remnants. These galaxies have diffuse envelopes which may exhibit shells or other fine structures (Schweizer & Seitzer 1992) and a single, possibly offcenter nucleus. These merger remnants no longer have bright tidal tails.

Data

- 65 LIRGs from Great Observatories All-Sky LIRG Survey (GOALS) sample (northern sample)
- This sample spans the full range of infrared luminosities and Galactic stellar masses observed in the GOALS sample

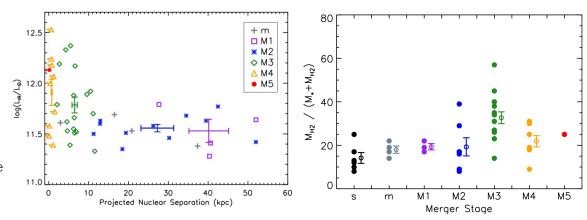
 $L_{IR} = 10^{11} - 10^{12.6} L_{\odot}$, $M_*{\sim}10^{9.5} - 10^{11.6} M_{\odot}$


 All objects were visually classified using I-band images from the Hubble Space Telescope, the University of Hawaii 2.2m telescope and the Pan-STARRS 1 survey


Result of classification

- 2 : ambiguous
- 4 : triple nuclei major merge
- 4 : minor merger
- 14 : single galaxies
- 3 : M1, 11 : M2, 17 : M3
- 9 : M4, 1 : M5

Visual classification – IR luminosity (Fig 3)


 $\begin{array}{l} L_{IR} \geq 10^{11.5} L_{\odot} & \text{all galaxies are interacting system} \\ L_{IR} \geq 10^{11.7} L_{\odot} & \text{all galaxies are major merger} \\ \text{Almost all ULIRG are late-stage merger (M3,4,5)} \end{array}$

MGF – **IR luminosity (Fig 4)** MGFs calculated from CO observations of 47 galaxies conversion factor $X_{CO} = 3.0 \times 10^{20} \text{ H}_2 \text{ cm}^{-2} (\text{K km s}^{-1})^{-1}$ MGF = $M_{H_2}/(M_* * M_{H_2})$

Almost all galaxies are rapidly increasing and fluttering above $L_{IR} \sim 10^{11.5} L_{\odot}$ Mean MGF of lower IR luminosity 12.7% Mean MGF of LIRG above $L_{IR} \sim 10^{11.5} L_{\odot}$ 23.8%

M3 : mean MGF 33% M4, M5 : 22%

Table 3Mean Properties of Galaxies vs. Merger Stage

Туре	$\log(L_{ m IR}) \ (L_{\odot})$	log(M) (M_*)	N _{sep} (kpc)	MGF (%)
s	11.29 ± 0.03	10.59 ± 0.10		14.2 ± 2.5
m	11.55 ± 0.07	10.79 ± 0.08	19.4 ± 7.1	18.0 ± 1.7
M 1	11.53 ± 0.11	10.88 ± 0.04	40.2 ± 5.0	19.3 ± 1.5
M2	11.56 ± 0.04	10.86 ± 0.08	27.2 ± 4.1	19.3 ± 4.2
M3	11.79 ± 0.08	10.71 ± 0.06	6.52 ± 0.67	32.7 ± 2.7
M4	11.91 ± 0.13	10.79 ± 0.11	${<}0.76\pm0.16$	21.4 ± 2.9
M5	12.13	10.91	< 0.19	25