DUVET: sub-kiloparsec resolved star formation driven outflows in a sample of local starbursting disk galaxies

Bronwyn Reichardt Chu,^{1,2,3,4 ★} Deanne B. Fisher,^{1,2} John Chisholm,⁵ Danielle Berg,⁵ Alberto Bolatto,⁶ Alex J. Cameron,⁷ Drummond B. Fielding,⁸ Rodrigo Herrera-Camus,⁹ Glenn G. Kacprzak,^{1,2} Miao Li,¹⁰ Anna F. McLeod,^{3,4} Daniel K. McPherson,^{1,2} Nikole M. Nielsen,^{1,2} Ryan Rickards Vaught,¹¹ Sophia G. Ridolfo,^{12,1,2} and Karin Sandstrom¹¹

¹Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

²ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia

³Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

⁴Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK ⁵Department of Astronomy, University of Texas, Austin, TX 78712, USA

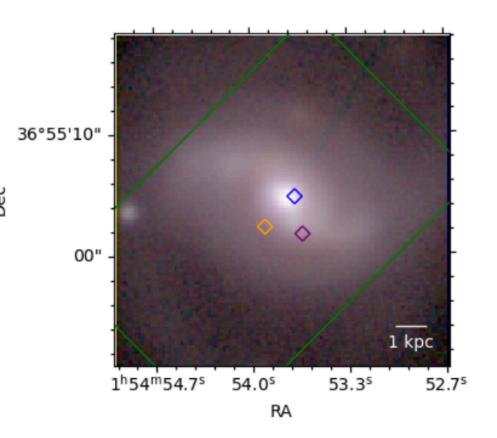
⁶University of Maryland, College Park, MD 20742, USA

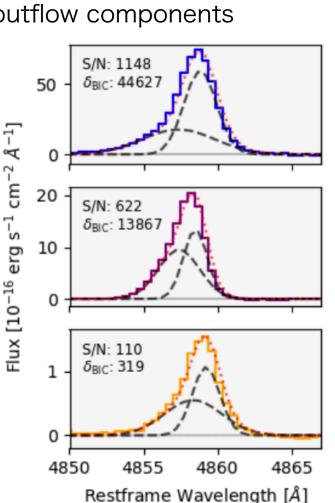
⁷Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK

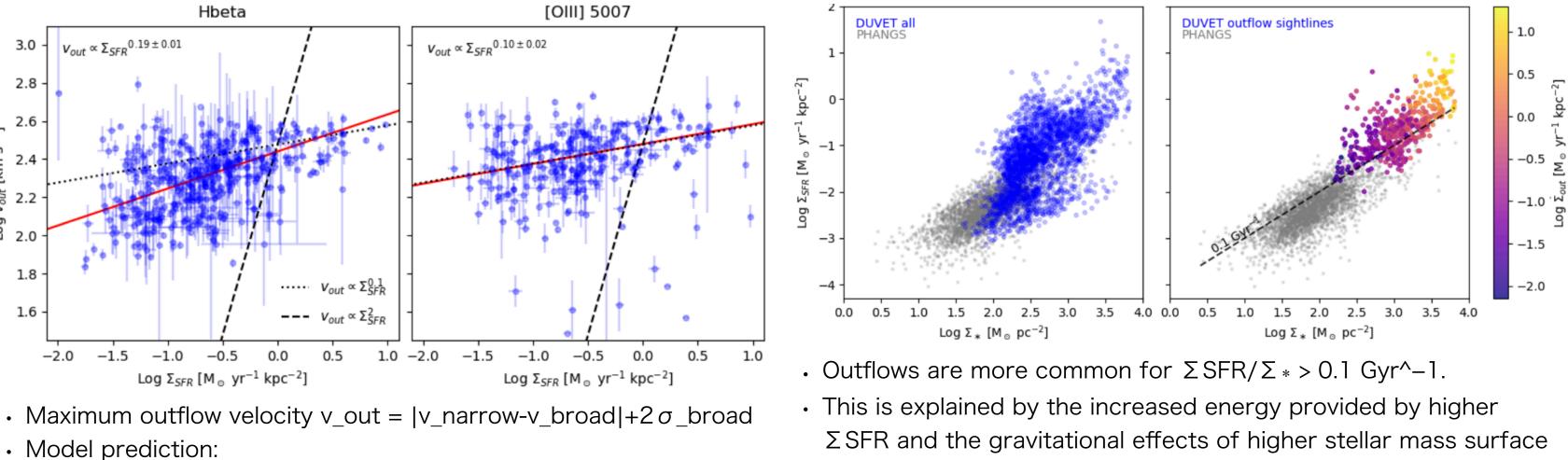
⁸Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA

⁹Departamento de Astronomía, Universidad de Concepción, Barrio Universitario, Concepción 4070032, Chile

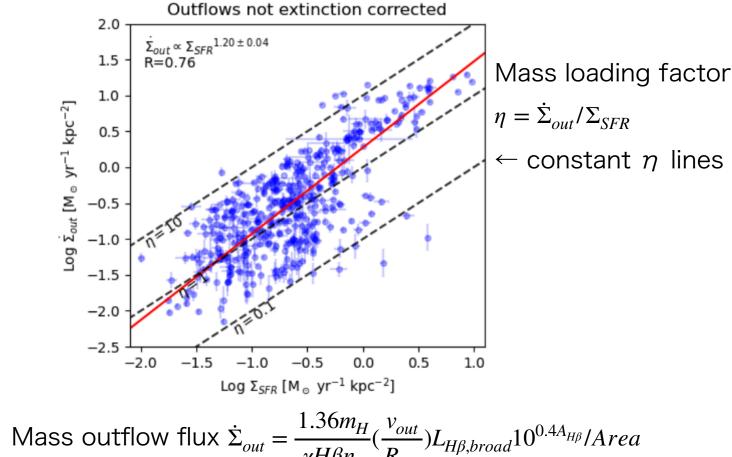
 10 Institute for Astronomy, School of Physics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310027, China


¹Department of Astronomy & Astrophysics, University of California, San Diego, CA, USA ¹²Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

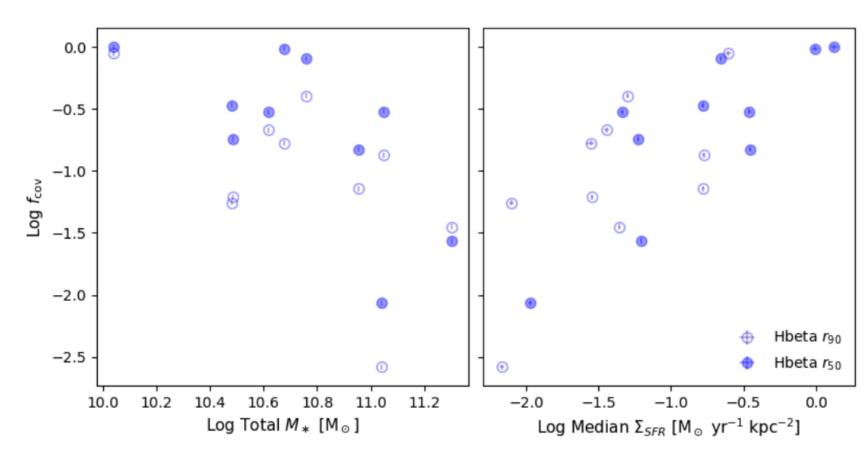

Background


- Star formation-driven outflows play a crucial role in the baryon cycle, contributing to the enrichment of the circumgalactic medium (CGM) and suppressing star formation by removing gas.
- Characterizing scaling relationships between outflow properties and Σ SFR offers constraints on understanding the physical drivers of outflows (SNe or radiation from massive stars).

Data


- 10 starburst edge-on galaxies
 - 0.02 < z < 0.04
 - 10 < log M* < 11.5
 - $0.5 < \log SFR(IR) < 1.6$
- Keck/KCWI observations (IFU) of Hb and [OIII]5007
 - Spaxel size 0.87" x 0.87" (typical seeing 0.7")
 - Double gaussian fitting to detect outflow components

- - v out $\propto \Sigma$ SFR² for wind from massive stars
 - v out $\propto \Sigma$ SFR^0.1 for SNe
- v_out shows shallow relationships with the star formation rate surface density for both Hb and [OIII] λ 5007, suggesting SNe as the dominant energy source driving the wind.

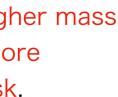

• Assumption: γ _Hb=1.24e-25 [erg cm^3 s^-1] (case B) $n_e = 100 [cm^{-3}]$

- Ionized gas mass loading factors range from ~ 0.1 to ~ 10.
- A flat relationship is observed between the mass loading factor and the star formation rate surface density, indicating a linear correlation between winds and the SFR surface density.

$$\frac{36m_{H}}{H\beta n_{e}}(\frac{v_{out}}{R_{out}})L_{H\beta,broad}10^{0.4A_{H\beta}}/Area$$

R out = 0.5 [kpc]

density (Σ_*).



- f_cov = N_outflow/N_total
- a negative correlation with stellar mass and a positive correlation with median SFR surface density.
- This is consistent with the picture where galaxies of higher mass have a larger gravitational potential well, and require more concentrated star formation to drive gas out of the disk.

Summary

- SNe are the primary driving force behind outflows.
- Outflowing mass has a nearly linear correlation with Σ SFR.
- Σ SFR/ Σ * > 0.1 Gyr⁻¹ is a threshold for outflow event.

