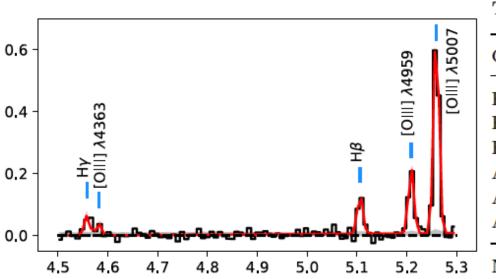

A fundamental plane of galaxy assembly and chemical enrichment within the first 700 Myr after the Big Bang

Kasper E. Heintz^{1,2}, Gabriel B. Brammer^{1,2}, Clara Giménez-Arteaga^{1,2}, Claudia del P. Lagos^{3,4,1}, Aswin P. Vijayan^{1,5}, Jorryt Matthee⁶, Darach Watson^{1,2}, Charlotte A. Mason^{1,2}, Anne Hutter^{1,2}, Sune Toft^{1,2}, Johan P. U. Fynbo^{1,2}, Pascal A. Oesch^{7,1,2} and Victoria B. Strait^{1,2}

Fundamental plane


- ・SFR, M*, metallicityによる空間内で、銀河は単一の平面上に分布する
- ・初期宇宙の銀河は、この関係に乗らない?
- ・これまで、初期宇宙のmetallicity測定はできていなかった
- ・JWST/NIRSpecによりz~10でも金属量の測定が可能になったので、 初期宇宙におけるfundamental planeを調査した

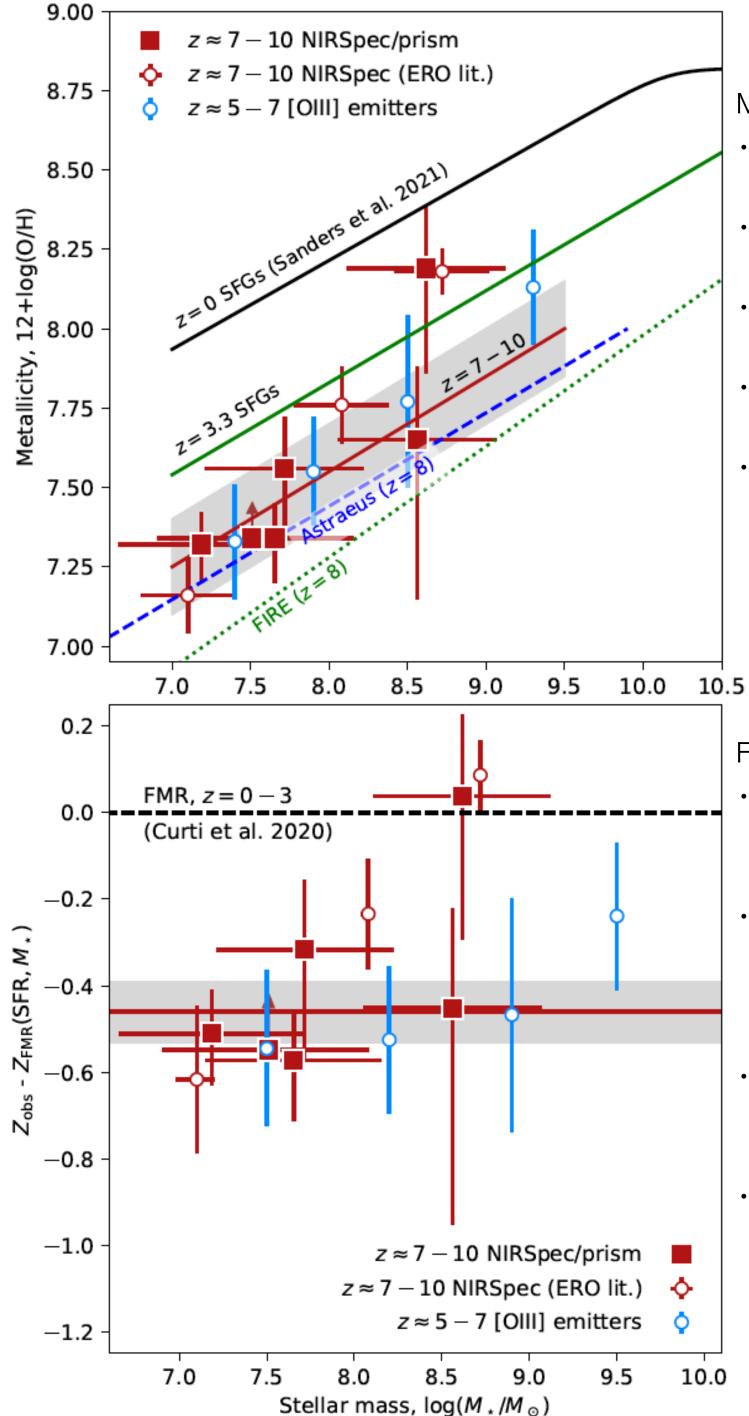

- M* : SED fitting with NIRCam photometry
- [OIII]4959, 5007, $H\beta$, $H\gamma$, [OII]3726, 3729 (RXJ-z950のみ[OIII]4363も分解)
- ・ Hβ/HγはCase Bによる予想値とconsistent → low dust content
- ・M*-SFRはmain-sequenceを形成 (localより5σ高く、
- z=4より1σほど高い)
- ・MetallicityはO32 ([OIII]/[OII])より推定
- ・RXJ-z950は[OIII]4363が分解できているので、direct Te-methodでも推定
- → O32とよく合った

Table 1 Physical properties of the primary sample galaxies at $z \approx 7 - 10$.

Galaxy ID	$z_{ m spec}$	${\rm SFR_{H\beta}}/M_{\odot}{\rm yr}^{-1}$	$\log(M_{\star}/M_{\odot})$	$12 + \log(\mathrm{O/H})_{\mathrm{O}_{32}}$	μ
$\mathrm{RXJ}\text{-}z950$	9.5008	$1.7^{+2.6}_{-1.0}$	$8.47^{+0.15}_{-0.18}$	$7.32^{+0.10}_{-0.12}$	19.2 ± 3.6
RXJ-z814	8.1496	$3.2^{+4.9}_{-1.9}$	$7.86_{-0.34}^{+0.28}$	> 7.34	2.25 ± 0.14
RXJ-z815	8.1523	$8.7^{+13.2}_{-5.2}$	$7.88^{+0.07}_{-0.05}$	$7.56^{+0.16}_{-0.25}$	1.46 ± 0.03
Abell- $z7878$	7.8783	< 12.5	$8.74_{-0.06}^{+0.07}$	$8.19_{-0.33}^{+0.\overline{19}}$	1.33 ± 0.04
Abell- $z7885$	7.8854	$4.2^{+6.3}_{-2.5}$	$7.98_{-0.02}^{0.03}$	$\begin{array}{c} 8.19 \substack{+0.\overline{19} \\ -0.33} \\ 7.34 \substack{+0.11 \\ -0.14} \end{array}$	2.12 ± 0.06
Abell- $z7874$	7.8739	$4.2_{-2.5}^{+6.3} \\ 13.5_{-8.1}^{+20.4}$	$8.71^{+0.07}_{-0.07}$	$7.65^{+0.23}_{-0.50}$	1.41 ± 0.04

5.3 Note. The listed properties are not corrected for the magnification factor provided in Col. 6.

Mass-metallicity relation

- $12 + \log(O/H) = 0.3 \log(M^*/M^*) + 5.15$, with a 0.15 dex scatter
- ・Z~6の[OIII] emitterの結果とよく合う → z=6から8で進化はない
- Local relationと比べると、metallicityは 5σ (ほぼ1dex) 小さい
- ・z=3.3のSFGと比べて0.25dex小さい (2σ)
- ・simulation (の外挿) と比べると若干大き
- → 予想されるよりも化学進化が早い

Fundamental relation

10.0

- ・z=0でのFMRを仮定してSFRとM*から推 定されたmetallicityと実測値との差をプ ロット
- ・Local relationと比べて系統的に小さい metallicityを示した
- → 初期宇宙の銀河はlocalのFMRに乗ら ない
- ・初期宇宙銀河での急激なmetallicityの減 少は、IGMからの急速な中性ガス流入に よるmetallicity希釈により説明可能
- ・理論的には、最初の1-2 Gyrに急速な IGMからのガス降着があり、銀河を急速 に成長させたと予想されている