On the Origin of Quenched but Gas-rich Regions at Kiloparsec Scales in Nearby Galaxies

Jing & Li (2024), ApJ accepted, arXiv:2408.12348

Introduction

How do galaxies quench their star formation?

- \rightarrow External & Internal processes remove or heat cold gas
- → Investigate the significance of local/global properties of galaxies to quenching at kpc scales

Data

Isolated disk galaxies from MaNGA (Optical IFS) -(Some selections)->265304 spaxels in 1205 galaxies Σ_{H2} from empirical estimator (Appendix B)

- Four parameters from MaNGA
- Estimator calibrated by EDGE-CALIFA

Method

Identify quenched regions by $D_n(4000) - \log \text{EW}(\text{H}\alpha) > 1.3$

- → Divide the regions into gas-rich quenched regions (GRQRs) and gas-poor quenched regions (GPQR)
- → Explore global properties of host galaxies
- \rightarrow Random forest classifier to identify important properties for quenching
- \rightarrow Explore property combinations in predicting quenching

Results

- Both QRs tend to be hosted non-AGN, high-mass, red NUV-r, low SFR, and high central density, but span wide ranges in other parameters
 → Largely independent on the global parameters
- N2Hα is the most significant single parameter associated with quenching
 Gas ionization by photons from large amounts of old stars
- Σ_* is the most important for quenching in GRQRs $\rightarrow \Sigma_*$ should drive the simultaneous decrease of f_{gas} and SFE \rightarrow Discussion in detail
- For GPQRs, the importance of Σ_{SFR} is enhanced to be comparable to Σ_* \rightarrow Decrease of SFE is much more independent on Σ_*

Discussion

Mechanism of quenching in GRQRs: $\boldsymbol{\Sigma}_*$ is important

- \rightarrow Existing evolved stars
- Dynamical stabilization -> X
- Unshielded gas -> X
- Stellar feedback -> radiation pressure from evolved star O
 → Provide support for surrounding gas to prevent collapse → Reduce SFE

Fig.5 BPT diagram for host galaxies

Fig.2 GRQRs and GPQRs in scaling relations

Fig.6 Feature importance of resolved properties

Fig.8 Property combination to predict quenching regions

