The EDGE-CALIFA survey: Molecular Gas and Star Formation Activity Across the Green Valley

Villanueva+2023, arXiv: 2312.03995, ApJ accepted

Background

- In M*-SFR plane: "blue cloud", "red cloud", and "green valley
- → Transition from blue to red (quenching)
- "Intrinsic mechanism" (<-> environmental)
 - gas consumption
 - change of star-forming efficiency: Morphology
- ightarrow ACA EDGE survey: Physical condition of the molecular gas in the different structural component

Fig.1 1.5

yr⁻¹)]

og[SFR (M $_{\odot}$

-2.0

-2.5

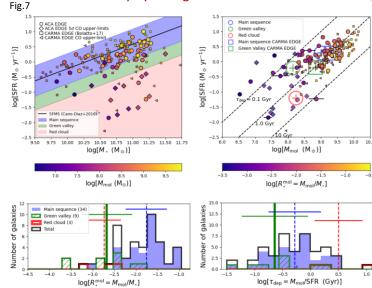
ACA EDGE

10.0

ARMA EDGE (Bolatto+1 APEX EDGE (Colombo+20

MS (Cano-Diaz+2016

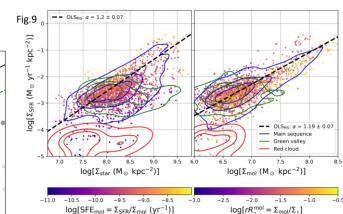
Data


60 galaxies from CALIFA survey DR3

- ALMA: high-resolution (5"-7") CO(2-1)
- CALIFA: optical IFU
- \rightarrow Unbiased sample from blue to red

Global (integrated) relations

- MS galaxies have higher molecular gas mass (mol.-to-stellar mass fraction)
- Most ACA EDGE galaxies τ_{dep} =1 Gyr, but not for all galaxies: red clouds have 3-6 times larger depletion time.

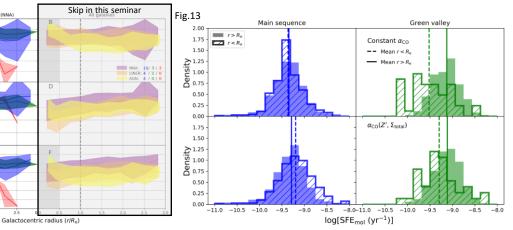


Resolved star-formation main sequence

- Same range in Σ_{star} for MS and GV, but slightly lower Σ_{SFR} in GV Resolved Kennicutt-Schmidt relation
- Systematic decrease in both Σ_{SFR} and Σ_{mol} from MS to GV
- ightarrow Also, in a spatially resolved situation,

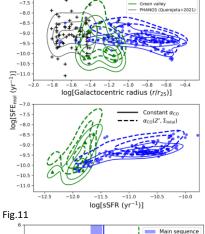
a transition from MS to GV is primarily driven by gas removal

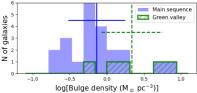
Radial profiles


11.5

11 0

Fig.12


 $\log[M_{\star}(M_{\odot})]$


- Inside-out increase of SFE, molecular gas fraction, and sSFR in GV galaxies out to r=Re
- → The quenching mechanism in GV galaxies is related to both gas removal and changes in SFE
- Using the variable $\alpha CO(Z,\Sigma total)$ make the SFE difference smaller

Impact of bulge on SFE

- SFE within the bulge is lower in GV than in MS galaxies
- → For the bulge region, SFE also affects the SF activity
- ← Suppression by turbulence caused by a dense bulge Part of Fig.10

