Arxiv: 2104.08168

Probing Cosmic Dawn : Ages and Star Formation Histories of Candidate $z \ge 9$ Galaxies

N. Laporte,^{1,2*} R. A. Meyer,³ R. S. Ellis, ³ B. E. Robertson, ⁵ J. Chisholm, ^{6,7} & G. W. Roberts-Borsani⁴

ABSTRACT

We discuss the spectral energy distributions and physical properties of six galaxies whose photometric redshifts suggest they lie beyond a redshift $z \simeq 9$. Each was selected on account of a prominent excess seen in the *Spitzer*/IRAC 4.5 μ m band which, for a redshift above z = 9.0, likely indicates the presence of a rest-frame Balmer break and a stellar component that formed earlier than a redshift $z \simeq 10$. In addition to constraining the earlier star formation activity on the basis of fits using stellar population models with BAGPIPES, we have undertaken the necessary, but challenging, follow-up spectroscopy for each candidate using various combinations of Keck/MOSFIRE, VLT/X-shooter, Gemini/FLAMINGOS2 and ALMA. Based on either Lyman- α or [O III] 88 μ m emission, we determine a convincing redshift of z=8.78 for GN-z-10-3 and a likely redshift of z=9.28 for the lensed galaxy MACS0416-JD. For GN-z9-1, we conclude the case remains promising for a source beyond $z \simeq 9$. Together with earlier spectroscopic data for MACS1149-JD1, our analysis of this enlarged sample provides further support for a cosmic star formation history extending beyond redshifts $z \simeq 10$. We use our best-fit stellar population models to reconstruct the past rest-frame UV luminosities of our sources and discuss the implications for tracing earlier progenitors of such systems with the James Webb Space Telescope.

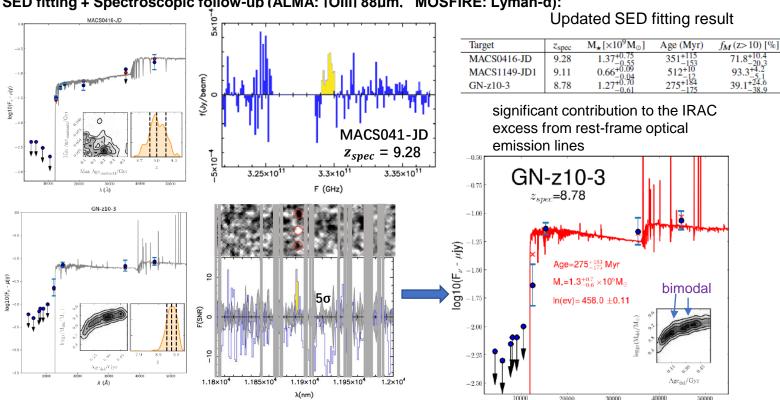
Background:

Numerical simulations: Star formation may start from 150 - 250 Myr after Big bang ($z \sim 15 - 20$)

4.5 μ m detection of Balmer Jump:

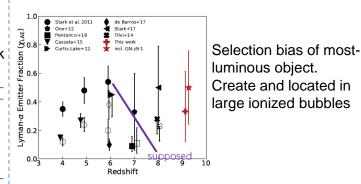
z ~ 9 (the universe age: ~ 550 Myr) & The presence of main sequence stars older than 250 Myr

 \rightarrow galaxy formation originating before a redshift z ~ 14

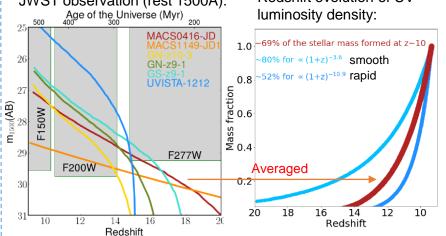

(Cosmic Dawn: z > 10)

First detection: MACS1149-JD1 at z = 9.11 (Formation: $z = 15.4 \pm 2.3$)

This paper:


Six promising z ~ 9 candidates (including MACS1149-JD1) 1) 2o non-detection bluewards & 5o detection redwards of Lyman break 2) [3.6] — [4.5] > 0.5 3) Photo-z permitting z > 9 at 1σ

Target	RA	DEC	Z _{phot}	M _{uv}	$M_{\star}[\times 10^9 M_{\odot}]$	Age (Myr)	$f_M(z>10)$ [%]
MACS0416-JD ^a	04:16:11.52	-24:04:54.0	$9.25^{+0.08}_{-0.09}$	-20.83±0.22	$1.50^{+0.84}_{-0.61}$	360^{+108}_{-157}	74.1+8.1 -25.6
MACS1149-JD1 ^b	11:49:33.59	22:24:45.76	$9.44^{+0.02}_{-0.03}$	-19.17±0.04	$0.44 \substack{+0.05 \\ -0.04}$	484^{+17}_{-36}	86.5+2.0
MAC31149-JD1	11.49.55.59	22.24.45.70	9.11	-19.12±0.04	$0.66^{+0.09}_{-0.04}$	512^{+10}_{-12}	93.3+4.2
GN-z10-3 ^c	12:36:04.09	+62:14:29.6	$9.57^{+0.23}_{-0.27}$	-20.72 ± 0.12	$1.57^{+0.81}_{-0.63}$	265^{+153}_{-145}	38.0+23.1
GN-z9-1 ^d	12:36:52.25	+62:18:42.4	0.22+0.32	-20.81 ± 0.18	$2.18^{+1.24}_{-0.85}$	323^{+137}_{-168}	65.1 ^{+18.7}
GS-z9-1 ^d	03:32:32.05	-27:50:41.7	$9.22_{-0.33}$ $9.26^{+0.41}_{-0.42}$	-20.38±0.20	2.47+1.62	326+128	$70.6^{+12.5}_{-25.4}$
UVISTA-1212 ^e	10:02:31.81	02:31:17.10	8.88 ^{+0.27} -0.46	-22.93±0.20	$9.7^{+5.10}_{-4.72}$	280+172 -174	$32.4_{-32.4}^{+47.2}$


The $z \sim 9$ Lyman- α fraction:

2 (3) of all 6 samples shows Lyman- α emission (large fraction, be opposed to reionization theory) Transmission through both the galaxy and the IGM

Star formation history at z > 10 (include future prospect): Redshift evolution of UV JWST observation (rest 1500Å):

 λ (Å)

SED fitting + Spectroscopic follow-up (ALMA: [OIII] 88 μ m, MOSFIRE: Lyman- α):