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Zero dark current in H2RG detectors: it is all multiplexer glow

Michael W. Regan and Louis E. Bergeron, 2020

Abstract. We present the analysis of James Webb Space Telescope near-infrared H2RG detec-
tors with a 5-um cutoff, which shows that, at temperatures <60 K, there is no measurable dark
current. Instead, the observed signal in dark exposures is almost entirely due to multiplexer glow
that arises as each pixel is selected. We are able to separate the per-sample glow from the time-
dependent dark current by comparing the observed signal in both continuous and sparsely
sampled dark exposures. Such explicit tests are required to break the degeneracy between dark
current and uniform amplifier glow. We show that the glow is lower within the regions of the
detector that are missing the epoxy back fill (voids). We also find that the glow from each pixel
extends out to a radius of several pixels. Because of the higher sampling frequency of subarray
observations, the per-sample glow leads to a higher apparent dark current in subarray exposures.
Finally, we show that the magnitude of the glow is affected by the pixel source follower current,
the pixel clocking rate, and the number of outputs running in parallel. Our measurement of
an insignificant dark current shows that the detector noise is no longer limited by the quality
of the mercury cadmium telluride layer but instead by the multiplexer and readout electronics.
© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
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measurement at 60 K could have a positive bias due to the large number of hot pixels at that
fomperature. The effor bars are one Sigma derived from the variance of the median dark lopes Fig- 10 The number of pixels with the measured dark current for six different temperatures. The
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Fig. 11 The fraction of pixels above three different thresholds (0.01 es™!, 0.2 e"s™', and
2 e s™) at varying detector temperatures similar to the study by Rauscher et al.” While the
number increases substantially between 37 and 65 K, up to 50 K, the hot-pixel fraction is still only
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