Constraints on the Binarity of the WN3/O3 Class of Wolf-Rayet Stars

P. Massey^{1,2}, Neugent, and Morrell

¹ Lowell Observatory, 2. Northern Arizona University

Abstract

- The WN3/O3 Wolf-Rayet (WR) stars were discovered as part of WRs survey in the Magellanic Clouds.
- Their place in the evolution of massive stars remains unclear.
- · Although these are not WN3+O3V binaries, they could still harbor unseen companions.
- → multiyear radial velocity study of 6 known WN3/O3s over 3–5 yr period.
- → no evidence of statistically significant radial velocity variations
- \rightarrow short-lived stage in the evolution of massive stars

Observation

Spectroscopic observation

- Las Campanas Magellan Echellette (MagE) spectrograph w/ Clay & Baade 6.5 m Magellan telescope : 1" slit
 - $: R \sim 4100 = 73 \text{ km/s}$
 - → measurement of radial velocity

Evaluation

Radial velocity

- · cross-correlation techniques using emission / absorption lines : Nv : λ4946
- : Nv + HeII : λ4946
- : Hδ / HeI : λ4100
- : Nγ / HeII : λ4339

Table 1 WN3/O3 Stars in This Radial Velocity Study							
Star	α_{2000}	δ_{2000}	V	B - V	M_V	No. of Observations	No. of S/N>100
LMC079-1	05 07 13.33	-70 33 33.9	16.31	-0.25	-2.6	13	9
LMC170-2	05 29 18.19	-69 19 43.2	16.13	-0.17	-2.8	10	6
LMC172-1	05 35 00.90	-69 21 20.2	15.95	-0.12	-3.0	12	8
LMC199-1	05 28 27.12	-69 06 36.2	16.65	-0.22	-2.3	10	8
LMC277-2	05 04 32.64	$-68\ 00\ 59.4$	15.83	-0.16	-3.1	9	8
LMCe159-1	05 24 56.87	$-66\ 26\ 44.4$	16.34	-0.23	-2.6	9	8

Date	HJD	Exp. Time (s)	S/N ^a	Designation			
LMC079-1							
2013 Oct 18	2,456,583.869	1×600	50				
2013 Dec 14	2,456,640.671	1×600	60				
2015 Jan 9	2,457,031.668	1×1200	80				
2017 Feb 7	2,457,791.675	3×500	60				
2017 Feb 8	2,457,792.606	3×550	100	А			
2017 Dec 31	2,458,118.659	3×900	130	в			
2018 Jan 1	2,458,119.675	3×900	120	С			
2018 Jan 6	2,458,124.661	3×900	100	D			
2018 Feb 5	2,458,154.678	3×900	130	Е			
2018 Nov 25	2,458,447.765	3×900	140	F			
2020 Nov 26	2,459,179.684	3×900	170	G			
2021 Dec 21	2,459,569.789	3×900	130	Н			
2022 Oct 2	2,459,854.738	3×900	175	I			

multi observation

4000

-	Tabl Radial Velocity	le 3 Measurements	Cross pair of radial velocity for each line
3 imes 900	175	I	
3 imes 900	130	Н	
		-	

	Radial Velocities (km s ⁻¹)							
Cross Pair ^a	N V λ4946	N V+He II λ4603-4686	Hδ/He II λ4100	Ηγ/Ηe II λ4339	Mean (regions)	Std. Dev. (regions)		
LMC079-1								
A–B	9.9	9.8	11.5	18.4	12.4	4.0		
A-C	12.6	11.1	4.6	8.6	9.2	3.5		
A–D	16.8	5.1	11.3	11.2	11.1	4.8		
A-E	13.0	1.5	0.3	14.4	7.3	7.4		
A–F	11.5	-13.8	1.1	11.8	2.7	12.1		
A–G	6.2	2.1	8.6	5.5	5.6	2.7		
A–H	16.5	19.6	2.6	-15.8	5.7	16.1		
A–I	13.8	-4.1	15.7	11.6	9.3	9.1		
B-C	2.9	-0.4	-8.5	-17.5	-5.9	9.1		
B-D	6.5	-3.4	0.8	-12.3	-2.1	7.9		
B-E	1.9	-7.7	-13.5	-6.9	-6.6	6.4		
$\sigma_{\rm pairs}$	6.4	13.2	8.4	13.8	5.7			

absorption-line from O3 star (Balmer + HeII, but no HeI)

Figure 1. Section of one of our highest-S/N spectra. The regions used in our cross-correlations are shown in red

Table 4 Statistics of Radial Velocity Measurements						
Star	$\sigma_{ m pairs} \ m km \ m s^{-1}$	$I \ \mathrm{km \ s}^{-1}$	Ν	E/I	F	р
LMC079-1	5.72	9.76	8	1.17	1.07	0.39
LMC170-2	3.20	13.66	6	0.47	0.17	1.00
LMC172-1	8.82	13.96	8	1.26	1.43	0.11
LMC199-1	6.39	13.45	8	0.95	0.72	0.83
LMC277-2	7.07	11.63	8	1.22	1.11	0.34
LMCe159-1	6.33	9.94	8	1.27	1.42	0.12

Cross pair of radial velocity for each line

Figure 2. Maximum allowable mass for any companion shown as a function of period based upon the maximum orbital semi-amplitude allowed by our data (K < 10 km s⁻¹). The three panels cover the range of masses determined for the WN3/O3 stars in our sample by the analysis of Neugent et al. (2017). For each panel, we have computed nine curves, corresponding to orbital inclinations *i* of 90° (edge-on), 60°, and 30°, and eccentricities *e* of 0.0 (circular orbit, shown in black), 0.3 (shown in red), and 0.5 (shown in blue). The *i* = 60°, *e* = 0.5 curve is coincident with the *i* = 90°, *e* = 0.0 curve.

- Mass of main star ~ 14M.
- Period of binary system
- · Orbital inclination of binary system
- Eccentricity
- K = 10 km/s

 \rightarrow mass of companion

- → ~2M for 100days
- \rightarrow ~1M for 10days
- → Not O stars

Summary and Discussion

- no evidence of radial velocity variations
 - : Any binary motion would have to have an orbital semi-amplitude of K < 10 km/s to remain undetected in data. : the mass of any unseen companion would likely be less than 2M[®] for periods of 100 days or less, and less than 1M[®] for periods of 10 days or less.
- · compact companion of solar mass?
- \rightarrow The formation time for a solar-mass star is many times the age of a WR star
- \rightarrow T Tauri ?
- lack of X-ray emissions
- \rightarrow the possibility of a neutron star companion in a wide orbit.
- non-binary WRs may have been stripped by companions that have since merged. \rightarrow no rapid rotation
- \rightarrow rotation rates are 120–150 km/s (=typical of normal O-type dwarfs)
- the companions in most of the known WR systems are luminous O-type stars
 → Such a companion would dominate the spectral energy distribution, swamping intrinsic absorption from the WN3/O3 component.

no companion & short-lived transitional phase in the evolution of massive stars

: still hydrogen exist & mass-loss rate is low

→ look for other examples of this new class of WRs / 今後、もっと観測しましょう