A thorough view of the nuclear region of NGC 253 - Combined Herschel, SOFIA and APEX dataset

J.P. Pé rez-Beaupuits¹ et al. ¹ European Southern Observatory

Abstract

- Herschel/SPIRE, PACS, HIFI, SOFIA/upGREAT, APEXでのNGC253の観測。
- SPIREとPACSのスペクトルと測光結果を組み合わせることで、ダストのスペクトルエネルギー分布(SED)を再現。

SPIRE PMW

- ¹²COラインSEDでNGC253の中心核のSEDを再現。
- 分子ガスの励起状態は3成分non-LTEのradiative transfer modelで得られる。
- continuumから3温度ダストモデル。
- 中心核のCOを説明するためにも3 componentsが必要。
- 3番目のCO成分(HCN and PACS 12CO lines)のみ、 shock/mechanical heating で説明可。

1. Observation & Method

- Herschel : SPIRE, PASC, HIFI
- SOFIA : upGREAT
- APEX : SABOCA

10

10

 10^{2}

10

10

Flux Density [Jy]

Observed Frequency (GHz)

350 µ1

よる分光スペクトル。 (40" beam)

	С	omponent Paramete	ers
Quantity	1^{st} component	2^{nd} component	3^{rd} component
$N({\rm H_2}) \ [{\rm cm^{-2}}]$	$(8.0\pm1.8)\times10^{21}$	$(1.6\pm0.4)\times10^{22}$	$(3.2\pm0.7)\times10^{21}$
S _{cloud} [pc]	$1.6 {\pm} 0.4$	$(1.5\pm0.3)\times10^{-2}$	$(2.6\pm0.6)\times10^{-4}$
$M_{mol} \ [M_{\bigodot}]$	$(1.9\pm0.4)\times10^{7}$	$(7.6\pm1.7)\times10^{6}$	$(6.1\pm1.3)\times10^4$
	¹² (00	
Φ	$(2.8\pm0.6)\times10^{-1}$	$(5.5\pm1.2)\times10^{-2}$	(2.2±0.5)×10 ⁻³
T_K [K]	90±10	50 ± 6	160 ± 12
$n(H_2) [cm^{-3}]$	$(1.6\pm0.3)\times10^3$	$(3.2\pm0.8)\times10^5$	$(3.9\pm0.8)\times10^{6}$
$N(^{12}CO) \ [cm^{-2}]$	$(4.0\pm1.5)\times10^{18}$	$(7.9\pm3.5)\times10^{18}$	$(1.6\pm0.4)\times10^{18}$
	¹³ (co	
Φ	$(2.5\pm0.6)\times10^{-1}$	$(1.2\pm0.3)\times10^{-2}$	
T_K [K]	90 ± 10	50 ± 6	
$n({\rm H_2}) [{\rm cm^{-3}}]$	$(1.6\pm0.3)\times10^3$	$(3.2\pm0.8)\times10^5$	
$N(^{13}CO) \ [cm^{-2}]$	$(1.0\pm0.3)\times10^{17}$	$(2.0\pm0.8)\times10^{17}$	
	но	CN	
Φ		$(1.2\pm0.3)\times10^{-2}$	$(2.2\pm0.5)\times10^{-3}$
T_K [K]		50 ± 6	160 ± 12
$n({\rm H}_2) [{\rm cm}^{-3}]$		$(3.2\pm0.8)\times10^5$	$(3.9\pm0.8)\times10^{6}$
N(HCN) [cm ⁻²]		$(1.3\pm0.5)\times10^{14}$	$(1.6\pm0.6)\times10^{12}$

それぞれの温度成分をFUVにすると、 $G_0 = 3.5 \times 10^5, 8.7 \times 10^6, 1.2 \times 10^9$

Mgas/Md ~ 200

・Total gas massは、4.5x10⁸ M_☉ @500um

・12CO(4→3) ~ CO(14→13) Flux - Jup 図は、3温度で記述。 (50K, 90K, 160K) ・160Kは、shock/mechanical heating gasのindicator。

・中心核はSN rateおよびy線観測から、cosmic-rayのenhancementが示唆される。

・OH+やH2O+輝線強度も、high-ionization fractionを示唆。