Charting the Lyman- α escape fraction in the range 2.9 < z < 6.7 and consequences for the LAE reionisation contribution

I. Goovaerts¹, T. T. Thai^{1, 2, 3}, R. Pello¹, P. Tuan-Anh^{2, 3}, N. Laporte¹, J. Matthee⁴, T. Nanayakkara⁵, and J. Pharo⁶

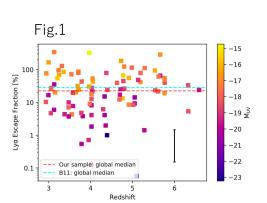
<u>Context</u> : The escape of Lyman- α photons at z>2 is an ongoing subject of study and an important quantity to further understanding of Lyman- α emitters (LAEs), the transmission of Lyman- α photons through the interstellar medium and intergalactic medium, and the impact these LAEs have on cosmic reionization.

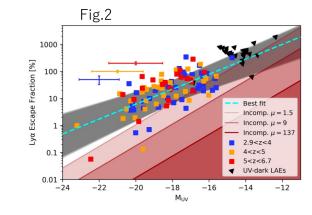
<u>Aims</u>: This study **aims to assess the Lyman-** α **escape fraction, f**_{esc,Ly α}, over the redshift range 2.9 < *z* < 6.7 using VLT/MUSE selected gravitationally lensed, intrinsically faint LAEs, which are of particular interest as the potential drivers of cosmic reionization.

<u>Methods</u> : $f_{esc,Ly\alpha}$ is assessed in two ways.

- 1. through **an individual study** of 96 LAEs behind the A2744 lensing cluster, with JWST/NIRCam and HST data
- 2. through a study of **the global evolution** of $f_{esc,Ly\alpha}$ using the state-of-the-art luminosity functions for LAEs and the UV-selected 'parent' population (dust-corrected).

How to assess $f_{\text{esc,Ly}\,\alpha}$

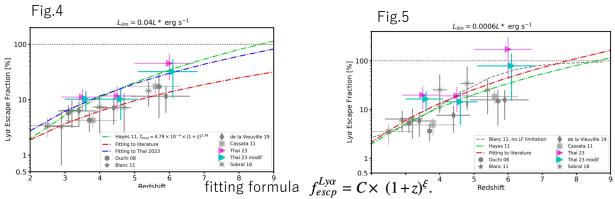

- 1. the ratio of the SFR inferred from the Lyman- α flux, to the dust-corrected SFR from the CIGALE SED fitting process.
 - conversion factor of 8.7 between Lyman- α and H α luminosities
 - using a Case B recombination scenario (Oster- brock 1989) ($T = 10^4$ K)
- 2. estimates of $f_{esc,Ly\alpha}$ in a global manner by comparing the Luminosity Function (LF) of LAEs and that of the 'total' galaxy population.
 - The ratio between **the LAE SFRD** and **the total**, **dust-corrected SFRD** in a given redshift interval
 - the SFRD obtained from UV LF is **treated as the total SFRD** of the entire galaxy population.


$$\rho_{Ly\alpha} = \int L_{Ly\alpha} \phi_{Ly\alpha} dL_{Ly\alpha}. \qquad \text{SFRD}_{Ly\alpha} [M_{\odot} \text{yr}^{-1} \text{Mpc}^{-3}] = 7.9 \times 10^{-42} \times \rho_{Ly\alpha}/8.7.$$

<u>Results</u> (Method1) :

- We find a negligible redshift evolution of $f_{esc,Ly\,\alpha}$ for our individual galaxies $({\sf Fig.1})$
- a more significant evolution towards higher escape fractions with decreasing UV magnitude and fit this relation. (Fig.2)

$$\log(f_{\rm esc,Ly\alpha}) = (0.27 \pm 0.02) \, M_{\rm UV} + (4.2 \pm 0.5).$$



Results (Method2) :

Two limits of LF

- + Fig.4 : 0.04L_{sun} for brighter galaxies (log $L_{Ly\,\alpha}$ [erg s^-1] ~ 41 and $M_{UV}\sim$ -17)
 - **agreement with previous literature** when integrating the luminosity functions to a bright limit.
- + Fig.5 : 0.0006L $_{sun}$ for faint regimes (log L $_{Ly\,\alpha}$ [erg s $^{-1}]$ ~ 39.5 and M $_{UV}$ ~ -13)
 - we observed enhanced values of $f_{esc,Ly\alpha}$, particularly around $z \sim 6$, where $f_{esc,Ly\alpha}$ becomes consistent with 100% escape.
 - This indicates for the faint regimes we sampled that galaxies towards reionization tend to allow very large fractions of Lyman- α photons to escape.
- For both cases, little evolution between z = 3 5 and a jump at $z \sim 6$
 - suggesting a rapid evolution of the LAE population towards reionization, although this effect is at < 1 σ for our dataset.

• the contribution of the LAE population to reionization

Taking the latest values $f_{esc,LyC}$ observed in LAEs at $z \sim 3$, we find that **LAEs can provide** all the ionizing emissivity needed for reionization.