arXiv:2202.03715 / ApJ 926, idL21 (2022)

EVIDENCE FOR THE COLD-STREAM TO HOT-ACCRETION TRANSITION AS TRACED BY Ly α EMISSION FROM GROUPS AND CLUSTERS AT 2<z<3.3

E. DADDI¹, R. M. RICH², F. VALENTINO^{3,4}, S. JIN^{3,5}, I. DELVECCHIO⁶, D. LIU⁷, V. STRAZZULLO⁸, J. NEILL⁹, R. GOBAT¹⁰, A. FINOGUENOV¹¹, F. BOURNAUD¹, D. ELBAZ¹, B. S. KALITA¹, D. O'SULLIVAN⁹, T. WANG¹²

まとめ:Keck KCWIでz=2-3.3銀河団を囲むGiant LgA Halo の観測 => cold-stream と hot accretionのtransitionらしきものを見つけた

Background:

- 理論予想では、
 - M_DM<M_shock[~]1e12Msun にある銀河はcold accretionでガス供給される。
 Hi-zの銀河が星形成率が高い原因
 - M_DM>M_shockだとショック加熱で落ちてくるガスが加熱される
 - M_shockはcooling timeとdynamical timeが釣り合うDM質量
- ただし、シミュレーションによるとhi-zではM_DM>M_shockのようなmassive haloでも ほそいcold streamになってガスが加熱されずに中心銀河まで落ちれる(DB06)
- M_stream = Cold steram modeが効くlower halo mass
 : M stream 1e12.Msun (z=2), 1e13.5Msun(z=3)
- Cold streamの観測的な証拠はない。ただし、cold streamのcollision加熱による LyAで観測可能なはず

観測:

- Keck/KCWIによるz=2-3.5の9個の銀河団観測
- 8天体から100kpcを超えるサイズのdiffuse LyAを検出
- いちばんmassiveなXLSSC122からは検出できず。
- M_DMの推定は
 - x-ray or SZ、または
 - M* =から van der Burg+14を使って
- SFRの推定は遠赤外線観測から

TABLE 1	SED IN THIS WORK.		
JALAXY GROUPS AND CLUSTERS USED IN THIS WORK.			

ID	RA	DEC	z	log(M _{DM})	$log(L_{Ly\alpha})$	log(SFR)	log(LAGN)	log(BAR)	$\log(\frac{M_{stream}}{M_{DM}})$	Tint	SB corr
				(M _☉)	$(ergs s^{-1})$	$(M_\odot \ yr^{-1})$	$(ergs s^{-1})$	$(M_\odot \ yr^{-1})$	DM	h	dex
			(1)	(2)	(3)		(4)				
XLSSC122	02:17:44.19	-03:45:31.5	1.98	14.2	< 43.0	< 2.3	< 45.3	4.4	-1.8	0.75	-
Cl-1449	14:49:14.05	08:56:24.6	1.992	13.8	43.5	2.8	45.5	3.9	-1.4	3.6	-
FVX-LAB	09:58:42.32	02:00:39.3	2.194	13.0	43.6	2.1	45.3	3.1	-0.4	1.0	-
Cl-1001	10:00:57.18	02:20:08.4	2.501	13.9	43.6	3.2	45.0*	4.2	-0.9	5.0	-
CC-0958	09:58:52.97	01:58:02.8	2.515	13.6	43.9	2.3	$< 44.6^{*}$	3.9	-0.6	2.0	-
RO-1001	10:01:23.06	02:20:04.9	2.915	13.6	44.1	3.1	44.9*	4.0	-0.1	8.5	-
RO-0959	09:59:59.48	02:34:41.7	3.096	12.8	44.0	3.2	45.1	3.1	0.9	1.5	0.07
SXDS-N-LAB1	02:18:21.31	-04:42:33.1	3.109	13.1	44.0	2.2	$< 44.9^{*}$	3.4	0.6	1.0	0.08
RO-0958	09:58:19.79	02:36:10.1	3.295	12.9	43.3	3.2	45.5*	3.2	1.0	1.25	0.18

Notes: (1) the redshift is from the luminosity weighted Lyα emission for all but XLSSC122 where it is from optical spectroscopy (Willis et al. 2020); (2) we use M₂₀₀; for XLSSC122 we converted M₅₀₀ into M₂₀₀ with a ×1.7 scaling; (3) SB corrections are already applied; (4) * indicate values inferred from Lyα point-source components (or lack there-of);

- LyA luminosityがBAR_coldのindicator (L_Lya=C_Lya x BAR_cold)だとする と

FIG. 2.— (Left:) Our sample in the DB06 diagram. Symbol sizes are proportional to $L_{Ly\alpha}$ (Tab. 1). The blue diagonal line defines M_{stream} (Eq. 2). Right: the ratio of extended $Ly\alpha$ luminosity in the structures is plotted versus the M_{stream} to halo-mass ratio. The relation in Eq. 4 is fitted (solid black line). Typical uncertainties are shown: 0.2 dex along the slope above M_{stream} , 0.3 dex along the y-axis below M_{stream} . Predictions for $M_{DM} < M_{stream}$ (cold-stream regime) are shown (colored dashed lines).

- Fig2 右:L_Lya/BAR vs M_steram/M_DM
 - α=0.97
 - C_Lya=1e41.51:いろんなモデル(重力エネルギーの1%程度がLyA として放射される)と2倍以内で合致
- Fig3: SFR, AGNについてのプロット。傾向は何となく見られる?
 - M_DM<M_streamだとcold streamのガスの20-50%が星形成に使われる?

- fig2.右の相関は、cold accretion のポテンシャルエネルギーがLyAとして放出されているものなのか?
 - 星形成からのUVによる電離はほぼ無視できる (ionization photonは銀河から出てこれない)
 - AGNの寄与:最大限見積もっても、4/9の銀河団しか説明できない。(Fig4)
- L_LyAは

議論

$$\log L_{Ly\alpha}/\text{erg s}^{-1} \sim 43.6 + \log \frac{M_{\text{DM}}}{10^{13}M_{\odot}} + 2.25 \log \frac{1+z}{1+3}, \quad (5)$$
$$L_{Ly\alpha}/\text{erg s}^{-1} \sim 10^{42.6} (\frac{1+z}{1+1.4})^{\sim 7} \text{ for } M_{\text{DM}} > M_{\text{stream}} \quad (6)$$
$$: - \overline{c}, z = 2 \overline{c} 1e43.3, z = 3 \overline{c} 1e44$$

FIG. 4.— (Left) The Ly α luminosity versus the AGN ionizing photon rates for our sample (black points estimated from the ultraviolet luminosity, blue empty point connected by dashed lines are computed from L_{boLAGN} , see text). The diagonal lines show the Ly α luminosity that AGN can ionise: theorethical maximum (dotted) and (solid) assuming a 30% escape fraction (Smith et al. 2020) and an opening angle $\Omega = 30\%$ (Simpson et al. 2005). (Right) The Ly α luminosity versus the cold accretion rate, as resulting from Eq. 3. The solid (dotted) line(s) show the average linear trend (1 σ range). The colored dashed lines are models as in Fig. 2-right (Dijkstra & Loeb 2009; Goerdt et al. 2010; Rosdhal & Blaizot 2012). In both panels QSO-selected Ly α nebulae are shown, individually in the left-panel and averaged line the right-panel where the QSOs' average hosting M_{DM} , hence BAR, are estimated from Eftekharzadeh et al. (2015).