arXiv:2211.05792 / 41pages, ApJL(?!) submitted

CEERS Key Paper I: An Early Look into the First 500 Myr of Galaxy Formation with JWST

STEVEN L. FINKELSTEIN,¹ MICAELA B. BAGLEY,¹ HENRY C. FERGUSON,² STEPHEN M. WILKINS,^{3,4}

まとめ: JWST/CEERSサーベイ (NIRCam 35.5平方分)で、z=9-16候補を 26天体検出。rest-frame UV-LFはz=9からz=11でほとんど変わらず。 z>10ではIMFがtop-heavyなのか?

컙롬

- z>10天体は、HSTの口径(2.4m)と波長(WFC3でF160Wまで)の限界のた め研究が進んでいない
- わかっていないこと
 - 初期宇宙での星形成効率は近傍と違うのか?
 - IMFはどうなっているのか? low-metallicity の効果でtop-heavy になっているのか?
- JWST最初のERSデータはキャリブレーションに問題があった(現在は解 決済み)

CEERS : Cosmic Evolution Early Release Science Survey

- 13あるERSの一つ
- CANDELS EGS field
- 10 NIRCam pointing

C-----

- 6 pointingでNIRSpecと同時観測
- 4 pointingでMIRIと同時観測
- 4 pointingにはNIRCam slitless grism 分光も撮られている
- F115W, F150W, F200W / F277W, F356W, F410M, F333W

ra	Filter	FWHM	PSF Enclosed Flux (d= $0.2''$)	Point-Source Limiting Magnitude (5σ)	Zeropoin Correction
Cam SW	F115W	$0.066^{\prime\prime}$	0.80	29.2	1.07 ± 0.0
Cam SW	F150W	$0.070^{\prime\prime}$	0.80	29.0	1.05 ± 0.0
Cam SW	F200W	$0.077^{\prime\prime}$	0.76	29.2	1.03 ± 0.0
Cam LW	F277W	$0.123^{\prime\prime}$	0.64	29.2	1.00 ± 0.0
WI me	F356W	0.149″	0.58	20.2	1.01 ± 0.0

Table 1. Imaging Data Summary

Camera	1 11001	1 11 11111	i bi Enclosed	I onto Source Limiting	Leropoint
			Flux (d= $0.2^{\prime\prime}$)	Magnitude (5σ)	Correction
WST/NIRCam SW	F115W	$0.066^{\prime\prime}$	0.80	29.2	1.07 ± 0.03
WST/NIRCam SW	F150W	$0.070^{\prime\prime}$	0.80	29.0	1.05 ± 0.02
WST/NIRCam SW	F200W	$0.077^{\prime\prime}$	0.76	29.2	1.03 ± 0.03
WST/NIRCam LW	F277W	$0.123^{\prime\prime}$	0.64	29.2	1.00 ± 0.03
WST/NIRCam LW	F356W	0.142''	0.58	29.2	1.01 ± 0.02
WST/NIRCam LW	F410M	$0.155^{\prime\prime}$	0.56	28.4	1.00 ± 0.02
WST/NIRCam LW	F444W	$0.161^{\prime\prime}$	0.52	28.6	0.99 ± 0.02
HST/ACS	F606W	$0.118^{\prime\prime}$	0.70	28.6	1.02 ± 0.02
HST/ACS	F814W	$0.124^{\prime\prime}$	0.63	28.3	0.96 ± 0.03
HST/WFC3	F105W	$0.235^{\prime\prime}$	0.35	27.1	0.97 ± 0.04
HST/WFC3	F125W	$0.244^{\prime\prime}$	0.33	27.3	0.95 ± 0.03
HST/WFC3	F140W	$0.247^{\prime\prime}$	0.32	26.7	0.95 ± 0.03
HST/WFC3	F160W	$0.254^{\prime\prime}$	0.30	27.4	0.95 ± 0.03

NOTE—PSFs were created by stacking stars across all four pointings. For our photometry, we PSF

Figure 3. The distribution of the best-fitting (minimized χ^2) photometric redshift versus apparent magnitude. Each object is

z>9 天体同定

- Photo-z: EAZY and CIGALE
 - 26天体同定
 - 1天体はCIGALEではz=5.4となった
- HST/SSTで同定されていたz>9候補二天体(Finlekstein+22a)
 - 片方はz=8.1,もう一方は検出できず(spurious?transient?)
- ・ サイズ
 - F200W
 - r=0.2-1.2kpc (@z=10) / median 0.45kpc

UV luminosity function

- z=9.5-12 サンプル
- z=9 LFからほとんど進化していない (Bowler+20とconsistent)
 - z=4-8までは急速に暗くなっているのと対照的

Figure 13. The rest-frame UV luminosity function at $z \sim 11$, shown as the red circles (the open circle denotes our faintest bin, where we are <30% complete). Each galaxy's magnitude and magnitude uncertainty is denoted by a small circle and line

Figure 14. The cumulative surface density of sources with $m_{F277W} < 28.5$ at redshift greater than a given x-axis value, starting

理論モデルとの比較

- Cumulative surface density (Fig 14)
 - F277W < 28.5mag
 - Behroozi+15 (Empirical model) とはよくあっている
 - semi-analytic / hydrodynamic modelでは銀河の数を再現できてない
 - ・ 実際の銀河ではダストがほとんどない?
 - Kennicutt-Schmidt則が近傍と異なる?: low-zでSFRは 高くなる
 - semi-analytic modelでDM halo merger treeの時間分 解能が足りていない?
 - hydrodynamic modelで空間分解能が足りていない?
 (高密度/burstyな星形成がトレースできていない)
 - IMFがちがう? hi-zでは low-z, CMB温度が高いなどの影響がある
- UV Luminosity
 - 理論予想よりも2倍くらい明るい(Fig 15)
 - たとえばTumlinson06だと0.01Zsolを仮定した時のtop heavy IMFで0.4dexくらい明るくなる。=> HeII 1640輝線の検出などで 確認できるだろう。
 - とはいえ、SNフィードバックとダスト吸収をゼロにすれば現行の IMFでも説明できる。
 - ということで A CDMが危うい、とかいう話にはならない(だろう)

Figure 15. The relation between rest-UV absolute magnitude and halo mass, obtained via abundance matching the observed UV