arXiv:1912.06152

THE IONIZING PHOTON PRODUCTION EFFICIENCY (ξ_{ion}) OF LENSED DWARF GALAXIES AT $z \sim 2^*$

NAJMEH EMAMI,¹ BRIAN SIANA,¹ ANAHITA ALAVI,² TIMOTHY GBUREK,¹ WILLIAM R. FREEMAN,¹ JOHAN RICHARD,³ DANIEL R. WEISZ,⁴ AND DANIEL P. STARK⁵

¹ Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521, USA ² Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125, USA ³ Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France ⁴Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA

⁵ Steward Observatory, University of Arizona, 933 N Cherry Ave, Tucson, AZ 85721 USA

宇宙の再電離のソースは銀河なのかAGNなのか ⇒ IGMに放射される電離光子数の赤方偏移進化を調べる

$$\Gamma = \int L\Phi(L)\xi_{ion}(L)f_{esc}(L)dL \qquad (1$$

Escape fraction (f_{esc}), Luminosity Function ($\Phi(L)$)は観測的に決まりつつある $\Rightarrow \xi_{ion}$ (ionizing UV/non-ionizing UV)を決めたい。 方法1: recombination ilne (Ha, Hb)

方法2 : metal line + stellar continuum + photoionization model

軽い銀河の寄与はモデルを絞り込む上で重要 そもそも軽い銀河の方がfescが大きいと予想されている

Z=1.4-2.7, M*=1e7.8-9.8Msunの重力レンズ銀河のξinnの評価 (z>6でのアナログとして) データ: MOSFIRE Ha & 1500A UV サンプル:62天体中28天体を解析に利用

$$\xi_{ion} = \frac{Q_{H^0}}{L_{UV}} [s^{-1}/erg. \ s^{-1}. \ Hz^{-1}]$$
(3)
$$L_{H\alpha}[erg. \ s^{-1}] = 1.36 \times 10^{-12} \ Q_{H^0}[s^{-1}]$$
(4)

わかったこと

- Effective $\xi_{ion} (= \log(\sum L_{H\alpha} / \sum L_{IIV}))$ の方がTypical にくらべて大きい: よりくらい銀河からの寄与が大きい
- 近傍の結果に比べてξ_{ion}は大きい:
 - Metallicity がより小さい
 - 直近の星形成より活発
 - 大質量バイナリが多い
- *ξ_{ion}*は他のhi-zの結果と同様の値
- ξ_{ion} にMUV, betaの依存性は見られない
- ξ_{ion} はEW(Ha), EW(OIII)と正の相関

Figure 3. $Log(\xi_{ion})$ as a function of $log(M_*)$. $Log(\xi_{ion})$ derived from the Typical ξ_{ion} stacking method are shown in red open

Figure 1. Not dust-corrected $\log(L_{H\alpha}/L_{UV})$ as a func- Figure 2. $\log(L_{UV}) - \log(M_*)$ relation of our lensed galaxtion of $\log(M_*)$ derived from the observed $L_{H\alpha}$ and L_{UV} .

ies. Green points are the parent photometric sample with M_* above $10^7 M_{\odot}$. The final spectroscopic \mathcal{E}_{ion} sample is shown

Figure 6. Top:log (ξ_{ion}) vs. $[O_{III}]$ 5007 equivalent width.