AGNAGN Seminar Sec13.4-13.End

Misato Fujii

13.4 Densities and Temperatures in the Narrow-Line Gas

- narrow emission lines observed in Seyfert 2 and narrow-line radio galaxies
 - · like the emission lines observed in HII regions and planetary nebulae

 - · [OII], [OIII], [NII], [NeIII], [OI], [NI], [NeV], [FeVII], and [FeX]
 - [SII] (relatively low stage of ionization) is generally much stronger in AGN
 - permitted lines (HI, HeI, and HeII) are moderately strong too

⇒narrow lines are emitted by a highly-ionized gas with normal abundances of the elements

Balmer decrement from narrow line

- · measured Balmer-line relative strengths don't fit the recombination predictions (Table4.4)
 - · observed Balmer decrement is steeper than the calculated recombination decrement
 - · same as planetary nebulae and H II regions
 - result from the effects of extinction by interstellar dust
 - natural in the AGNs
- · calculate the amount of extinction from the Balmer decrement
 - \rightarrow H α /H β (corrected by standard redding law) = 3.08
 - larger than the calculated recombination (=2.85)
 - \cdot this increase is the result from an additional contribution due to collisional excitation of H eta
 - →correct for dust extinction on the measured line intensities
 - · there isn't sufficient information to make more sophisticated correction for dust extinction in AGNs
 - automatically very nearly correct at H α and H β
 - · there can't be a large error because the extinction probably varies smoothly with wavelength

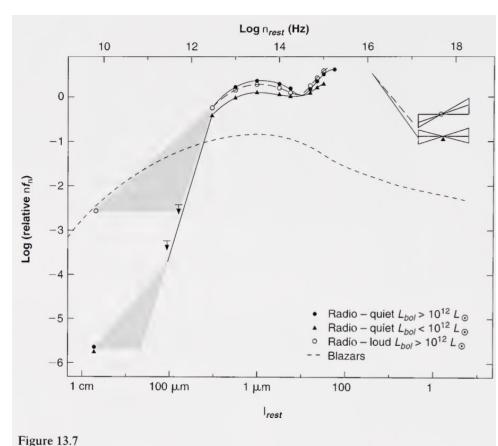
Physical condition of AGN

- · estimate the relative abundances of the ions
 - the approximate elemental abundances (Cyg A, Table 13.4)
 - ⇒approximately the same composition as Galaxy and galaxies with HII regions or starburst nuclei
 - · H is the most abundant element
 - He is less abundant (1/10 of H)
 - · O, Ne, N, and presumably C are the most abundant heavy elements
 - Fe is clearly under abundant
 - due to depletion onto grains
 - ⇒dust is mixed with the ionized gas
- corrected intensities
 - →diagnostic information on the physical conditions in the ionized gas
 - \rightarrow mean values of T and n_e from the [OIII], [NII], [OII], [SII], and [OI] line ratios

13.5 Photoionization the main source of energy input

- temperatures in the ionized gas in NLRGs and Seyfert 2: $\sim 1-2 \times 10^4 \mathrm{K}$
 - →strong observational evidence that the main source of energy input is photoionization
 - · other plausible mechanism: shock-wave heating or collisional heating
 - · results in collisional ionization and a direct relationship between temperature and ionization
 - under only shock-wave heating condition
 - \cdot [OIII] lines would be radiated at $T > 5 \times 10^4 \mathrm{K}$ and indicate a much higher than observed
 - · under photoionization conditions
 - no direct relationship between gas temperature and ionization
 - effect of radiative cooling by collisionally excited line radiation increases with increasing temperature
 - \rightarrow keep T \sim 1 2 \times 10⁴K
 - ⇒mechanism must be photoionization in all AGNs

The main source of the radiation


- the main source of the radiation can't be hot stars as in HII regions and planetary nebulae
 - NLRG and Seyfert 2 has a wide range of ionization with strong emission lines
- ⇒main source must have much "harder" spectrum
 - \rightarrow many high-energy photons ($h\nu = 100 \mathrm{eV}$)
 - → · high ionization near the source
 - · long, partially-ionized "transition zone" in which H^0 , H^+ , e^- , O^0 , and S^+ all coexist
 - →strong [OI] and [SII] lines can be collisionally excited
 - physically, the width of the transition zone ≈ mean free path of an ionizing photon
- the higher the photon energy is, the longer the mean free path is, and the larger the transition zone is

Spectrum of AGN

- continuum in AGN: featureless and extend across a broad range of wavelengths
 - Figure 13.7: representative SEDs
 - observed optical-UV approximately fits a power law:

$$L_{\nu} = C \nu^{-\alpha}$$
 (typically, $\alpha \approx 1 - 2$)

- power law can both fit the observed continuum and produce reasonably strong [OI], [SII], [NeV], and [FeVII] emission lines
- comparison of the observed emission-line spectrum can be made
 - instead of model AGNs' complicate structure

Spectral energy distributions for several sets of active nuclei. A horizontal line on this plot corresponds to $L_{\nu} \propto \nu^{-1}$, and roughly approximates the energy distribution from infrared wavelengths to X-ray energies.

Narrow-line regions

- narrow emission-line spectra of BLRGs, Seyfert 1, and Seyfert 1.5 are similar to NLRGs and Seyfert 2s
- ⇒the narrow-line regions (NLRs) in which the narrow lines arise in AGNs are photoionized by high-energy photons
- the high level of ionization in a greater proportion of the NLRs in Seyfert 1 than in Seyfert 2s
- indicate a difference in the shape of the ionizing spectrum at high energies, or in the fluxes of ionizing photons incident on NLR
 - in terms of the ionization parameter

$$U = \frac{1}{4\pi r^2 c n_{\rm H}} \int_{\nu_0}^{\infty} \frac{L_{\nu}}{h \nu} d\nu$$

- L_{ν} : the luminosity of the source per unit frequency interval
- r: the distance from the source
- U: the dimensionless ratio of the ionizing photon density to the electron density

Mass and size of NLR

- · estimate the mass and size of the NLRs by the same method as planetary nebulae
 - · luminosity emitted in a recombination line $(H\beta)$

$$\rightarrow L (H\beta) = n_e n_p \alpha_{H\beta}^{eff} h \nu_{H\beta} V \varepsilon \text{ [erg s}^{-1}]$$

- · V: the total volume of the NLR
- ε : the filling factor (Section 5.9)
- mass of ionized gas: $M = (n_p m_p + n_{\text{He}} m_{\text{He}}) V \varepsilon [\text{gm}],$
 - $\cdot n(He) = 0.1n_p$ (assume solar abundances)
 - $\cdot n_e = [n_p + 1.5n(\text{He})]$ (assume that He is an equal mix of He⁺ and He⁺⁺)
- assume a spherical NLR $\rightarrow V = \frac{4\pi}{3}R^3$ [cm³],
 - R: a specific numerical value of the dimension
- the most luminous Seyfert 2s or NLRs of Seyfert $1 \rightarrow L(H\beta) \approx 2 \times 10^8 L_{\odot}$

$$\Rightarrow M_{ion} \approx 7 \times 10^5 (10^4/n_e) M_{\odot}, R \approx 20 \varepsilon^{-1/3} (10^4/n_e)^{2/3} \mathrm{pc}$$

•
$$n_e = 10^4 \text{cm}^{-3}, \, \varepsilon \approx 10^{-2}$$

$$\Rightarrow M_{ion} \approx 10^6 M_{\odot}$$
, $R \approx 90$ pc

• agree with the fact that the nearest Seyfert 2 NLRs apparently have diameters $\sim 10^2 - 10^3 \mathrm{pc}$

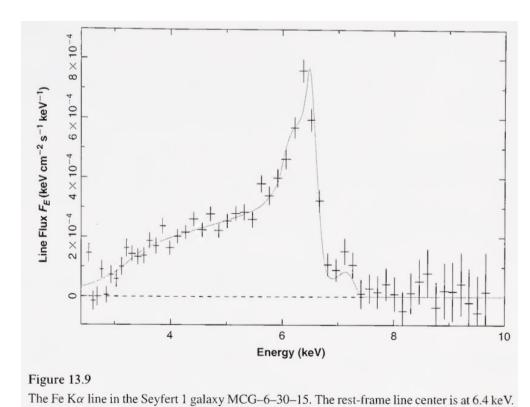
13.6 Broad-Line Region

- spectral feature of Seyfert 1 and 1.5, and BLRGs:
 - broad permitted HI emission lines
 - weaker broad HeI λ 5876
 - broad HeII λ 4686
- · most Seyfert 1s and 1.5s have broad FeIIλλ4570, 5250 with a wide range of strength
 - usually considerably fainter in BLRGs, but present
- · broad HI, HeI, HeII, and FeII emission lines, and blue bump are seen in quasars and QSOs
 - "blue bump": feature in the continuum in $\lambda\lambda$ 2000-4000 region
- · composed of many unresolved FeII lines and HI Balmer continuum and higher-order Balmer lines
- In UV region, recombination lines of HI and HeII, and collisionally excited lines of the heavy elements are present

Electron density in BLRs

- · all the broad emission lines observed in AGNs are permitted or intercombination lines
 - forbidden lines don't have similar broad profiles
 - the broad lines arise in a so high density region $(n_e > n_c)$
- →all the levels of abundant ions which can emit forbidden-line are collisionally deexcited
- broad component of [OIII] λ 5007 is at most 1% to H β with respect to the same line in narrow-line objects
 - $n_c(0 \text{ III}) \approx 10^6 \text{cm}^{-3}$
 - \rightarrow lower limit to the mean electron density in BLR: $n_e > \sim 10^8 {\rm cm}^{-3}$
 - \cdot in UV, [CIII] λ 1909 is observed with a broad profile
 - $n_e \le n_c(\text{C III}) \approx 10^{10} \text{cm}^{-3}$
 - \rightarrow the mean electron density in observed BLRs: $n_e \sim 10^9 {
 m cm}^{-3}$

Physical conditions of BLRGs


- the observed FeII emission indicates that T < 35,000 K
 - · at higher temperature, it would be nearly completely ionized to FeIII
 - \Rightarrow for approximate estimates, $T \sim 10^4$ K
- estimate the amount of ionized gas in the BLR
 - the most luminous AGNs of Seyfert 1 and BLRGs have $L(H\beta) \approx 10^9 L_{\odot}$
 - $M_{ion} \approx 36 M_{\odot} (10^9/n_e)$ and $R = 0.015 \varepsilon^{-1/3} (10^9/n_e)^{2/3} {\rm pc}$
 - · representative density $n_e \approx 10^9 {
 m cm}^{-3}$ and $M_{ion} > 40 M_{\odot}$, and assumed $\varepsilon \approx 10^{-3}$
 - $\rightarrow R \approx 0.07 \,\mathrm{pc} \approx 0.2 \,\mathrm{light} \,\mathrm{yr}$
 - too small to resolve even for the nearest BLR
- · the broad emission line profiles, and the fluxes vary in a week or two in many BLRs
- →several campaigns to measure the time lag between a continuum variation and the response of the emission lines
- the BLR is stratified with higher ionization species having shorter lags, and originating at smaller distances from the continuum source
 - - the much longer light-travel times estimated

Mechanism of energy input in the BLR

- the nature of the energy input to BLR: most probably, photoionization by the high-energy extension of the observed featureless continuum
 - evidence: correlation of the luminosities in recombination lines and featureless continuum
 - different AGNs have essentially the same H α emission equivalent width
- not only for the Seyfert 2 and NLRGs, but also for the Seyfert 1.5s, BLRGs, Seyfert 1s, and quasars and QSOs
 - ⇒all the ionization (NLR and BLR) is due to photoionization
 - other evidence: the variations in the continuum and emission lines are correlated
- observed results are consistent with photoionization being the energy input to BLR

Facts about AGN

- optical spectrum shows forbidden lines ($n_c \approx 10^4 {\rm cm}^{-3}$), and permitted lines ($n_c \approx 10^{14} {\rm cm}^{-3}$)
- the NLR is more distant from the continuum source, and has lower density than the BLR
- ⇒gas present on a variety of distance scales
- · lower density gas is more distant from the nucleus, and have narrower linewidths than denser gas
- X-ray lines (Fe K α) have $n_c \approx 10^{20} {\rm cm}^{-3}$, even higher than the optical and UV permitted lines (Figure 13.9)
- permitted lines in the optical and UV have $n_c\approx 10^{14-15}{\rm cm}^{-3}$ but don't show broad wing
 - \Rightarrow gas emitting the Fe K lpha must have $10^{14} {
 m cm}^{-3} < n_c < 10^{20} {
 m cm}^{-3}$
- equivalent width is proportional to the gas column density (must be large)
 - \Rightarrow Fe K α line is from the densest gas close to massive black hole
- is broadened and shifted by a combination of Doppler motions and gravitational redshifts

