AGNAGN Seminar Sec12-12.3

Misato Fujii

12.1 Introduction

- · novae & supernovae: shells of gas are cast off from evolving star and returned to interstellar space
 - much more violent than planetary nebulae
 - velocity of expansion
 - nova shells: $\sim 10^3$ km/s
 - supernova shells: $\sim 10^{3-4}$ km/s
 - mass of nova shells are much smaller than planetary-nebula shells
 - planetary-nebula shells: $\lesssim 10^{-4} M_{\odot}$
 - supernova shells: $\geq 1M_{\odot}$
 - observed line spectra have general similarities
- heated and ionized gas tends to radiate more or less the same emission-line photons, regardless of the mechanisms
- →discuss each shells

12.2 Nova Shells

- · novae: evolving star suddenly becomes much brighter, reaching $L \gtrsim 10^4 L_{\odot}$
 - spectra \rightarrow material leaves the star with $v\sim10^3$ km/s
 - · emission-line profiles→indicate multiple "shells"
 - release $E > 10^{45}$ erg/year, and gradually return to pre-outburst state ($\approx 10^2 \, \mathrm{yr}$)
- physical mechanism of novae
 - close binary stars (white dwarf & red dwarf or subgiant)
 - →overflow subgiant's Roche lobe and lose mass into white dwarf's lobe
 - →inflowing mass spirals into white dwarf as an accretion disk
 - →build-up of hydrogen-rich material on the surface of the white dwarf
 - →the temperature at its inner edge rises
 - →start explosive thermonuclear runaway
 - →energizes the nova outburst
 - ejecta: mixture of gas with a composition from the subgiant and material from the white dwarf
 - nova explosions repeat every $\sim 10^4 10^5$ yr

Figure 12.1

The shells around the novae DQ Her (left) and GK Per. DQ Her erupted in 1934 and its shell had a diameter of roughly 20" when this image was taken. GK Per erupted in 1901. (GK Per, WIYN Observatory)

Spectrum

- initial stage
 - dense and optically thick from UV to infrared
 - form a photosphere similar to A-F supergiant with broad blue-shifted absorption lines
- · soon after the peak luminosity
 - · the density of the shell falls, the gas becomes optically thin
 - begins to show emission lines of HI and Hel
- · as the continuum weakens
 - the emission lines strengthen
 - typical nebular lines ([NII], [OIII], [NeIII]) start to appear and become stronger
 - initially, the density is above the critical of the nebular lines
 - they are faint
 - [NII] λ 5755 and [OIII] λ 4363 are relatively strong due to the high density
 - as the density falls below the critical densities
 - [NII] λ 5755 and [OIII] λ 4363 weaken with respect to [NII] $\lambda\lambda$ 6548, 6583 and [OIII] $\lambda\lambda$ 4959, 5007
- spectrum gradually changes to an almost pure nebular-type spectrum
 - · broad emission lines resulting from the high expansion velocity

Growth of nova shell

- a few years after the outburst
 - · the ejecta becomes a small, faint nebulous shell surrounding the post-nova star
 - →expand at constant-velocity
 - →gradually become fainter
 - →eventually merge into and become part of ISM
- distance of a nova shell
- · determined by comparing the measured radial velocity of expansion with the proper motion (or angular velocity) of expansion
 - DQ Her (Nova Herculis 1934)
 - measured radial expansion velocity: $320 \pm 20 \text{ km/s}$
 - the dimensions of the shell: 11" x 17"
 - \rightarrow distance: 420 ± 100 pc
 - · uncertainty: the major or minor axis of the elliptical shell

Spectra of shell

- · nova shells have quite unusual nebular spectra
 - many permitted lines of various stages of ionization of N and C
 - normal HI, Hel and Hell lines
 - a very few forbidden lines ([NII] $\lambda\lambda$ 6548, 6583 and [OII] λ 3121)
- · reason of the nearly complete absence of forbidden lines from these optical spectra
 - the temperature is so low that they all are suppressed
 - thresholds for excitation χ is much larger than thermal energies $(\exp(-\chi/kT)\ll 1)$
 - · at low temperatures, only recombination lines are expected to be visible in the spectra of nebula
 - for a collisionally excited line near 6000Å, T < 3,500 K is required for $\exp(-\chi/kT) < 10^{-3}$
- the strongest expected lines in the optical spectrum are H α H β , Hel λ 5876, and Hell λ 4686 for HI and He
 - · observed in nova shells

abundance of the elements in nova shells

- relative abundances of the elements in nova shells can be determined from the relative strengths of their emission lines
 - CII $(2s^22p^2p^o 2s2p^2D \lambda 1335)$: strong because of dielectronic recombination of C^{++} through C^{+}
- observational data→nova shells are somewhat enriched in He, and greatly enriched in C, N, & O, compared to unevolved stars
 - ⇒significantly contribute to the present abundances of heavy elements in ISM
- · large abundances of C, N, and O
 - →explain the low temperature and the near absence of forbidden lines in the observed spectrum
 - even at low temperatures, the rate of collisionally excited far-infrared line radiation is very large pequilibrium temperature is quite small by higher radiative cooling rates

Model of a nova shell

- photoionization model of a nova shell can be calculated by similar ways of HII regions and planetary nebulae
 - In a nova, the source of the ionizing radiation is the accretion disk around the white dwarf
 - the shell is not a simple sphere and the spectra of the minor and major axes are different
 - 1. genuine composition or density differences
 - 2. the more distant portions of the shell receive a lower flux
 - 3. the shape of the ionizing continuum may be different
 - best models (Table 12.1) make distinctions between the major and minor axes
 - →reproduces qualitatively all its main features
 - · quite different from the ordinary HII regions and planetary nebulae
- · the high-energy photon processes is taken into account to calculation
 - main source of excitation of [OII]λ3727
 - photoionization of \mathcal{O}^0 by photons
 - \leftrightarrow collisional excitation of O^+ in typical HII regions and planetary nebulae
- main cooling source in nova shells: collisional excitation and line radiation from N^+ , N^{++} , and O^{++}
 - · observation of these emission lines provide a direct measure of the major coolants

12.3 The Crab Nebula

- supernovae: much higher luminosities than novae $(M_{bol} \approx \sim -18 -20, L \approx 10^9 10^{10} L_{\odot})$
 - Type II: show hydrogen emission lines
 - · imply the presence of hydrogen in the outer envelope of the evolved star
 - end stages in the evolution of massive stars $(M \gtrsim 8M_{\odot})$
 - · H burning, He burning, and further thermonuclear burning stages lead to heavy nuclei
 - →central core collapses to a neutron star or black hole, and a shell is expelled with high velocity
 - eject greater masses ($\sim 10 M_{\odot}$) and lower luminosities ($M_{bol} \approx -18$)

Classification of supernovae

- Type I: don't show hydrogen emission lines
 - →suggest that they originate from a source with little hydrogen
 - Type Ia: show Si lines
 - resulting from the thermonuclear destruction of white dwarf
 - accrete white dwarfs in binary systems
 - →grow to exceed the Chandrasekhar limit
 - →ignite a C (or He) detonation
 - progenitors or outputs are a homogeneous group
 - →used as standard candles to large distances
 - Type la eject lower masses ($\sim 1 M_{\odot}$) and higher luminosities ($M_{bol} \approx -19.6$)
 - Type Ib: don't show Si lines, but have He lines
 - Type Ic: don't show Si nor He lines
- Type Ib and Ic: massive stars which have lost their hydrogen-rich outer envelop by stellar winds or the explosion that is similar to Type II

Crab Nebula

- · Crab Nebula (NGC 1952): the remnant of a supernova
 - show hydrogen emission lines with a relatively strong
 - →Type II supernova
 - the emission lines are concentrated in the filaments (Figure 12.2a)
 - the continuum arises in the amorphous gas (Figure 12.2b)
 - the radial velocity splitting at the center: ~2900 km/s
 - →expansion velocity: 1450 km/s
 - · much larger than in planetaries but considerably less than typical supernova
 - a pulsar very near the center of the Crab Nebula
 - →the neutron star remnant of the original pre-supernova star
 - an extremely strong radio source
 - · emission mechanism that produces both the radio-frequency and amorphous optical continuum
 - synchrotron emission

Figure 12.2

NGC 1952 (Crab Nebula). Both photos were taken with the Shane 3-m reflector. The upper photo (a) was taken with a red filter-plate combination transmitting chiefly Hα, [N II]. The lower photo (b) was taken with a yellow filter-plate combination transmitting chiefly continuum radiation. (ΘUC Regents/Lick Observatory)

emission-line spectrum of the Crab Nebula

- · typical nebular lines (HI, HeI, HeII, [OII], [OIII], [NII], etc.)
- a wide range of ionization, including relatively strong [OI], [SII], and [NeV]
- [OII] $\lambda\lambda$ 3726, 3729 and [SII] $\lambda\lambda$ 6716, 6731 line ratios
 - \rightarrow typical electron densities $n_e \approx 10^3 \, \mathrm{cm}^{-3}$
- [OIII] $(\lambda 4959 + \lambda 5007)/\lambda 4363 \rightarrow$ mean temperature T = 15,000 K
 - the corresponding ratio for [NII] \rightarrow T = 7,400 K
- · derived average abundances over the entire nebula
 - $\cdot [n(He^+) + n(He^{++})]/n(H^+) = 0.47$
 - $[n(0^+) + n(0^{++})]/n(H^+) = 10^{-3.5}$
 - $\cdot n(N^+)/n(H^+) = 10^{-4.0}$
 - ⇒ the material in the filaments is He-rich (result of nuclear processing)
 - abundances of N and O compared to H are approximately normal
 - \cdot low compared to H + He

Structure of Crab Nebula filaments

- derived temperatures and abundances
 - ⇒photoionization is the main mechanism to the ionized gas in the filaments
 - the continuum of the amorphous region of NGC 1952 through the optical into the near UV
 - →can be fit with the X-ray flux from the Crab Nebula
 - optical continuum is strongly polarized
 - luminosity and polarization fit smoothly to the radio-frequency region
 - · optical continuum of the amorphous region of NGC 1952 is due to synchrotron emission
 - the radio continuum, and the UV and X-ray continua, too
- · magnetic field of the rotating neutron star gives energy to the gas near it
 - part of energy goes into expanding the nebula
 - · the rest into accelerating electrons that produce the synchrotron radiation
 - ⇒filaments: regarded as high-density regions photoionized by source of continuum radiation
 - direct photographs→synchrotron source is extended
 - · kinematic studies → filaments are in a thick shell surrounding the extended source

Model of Crab Nebula filaments

- the observed and calculated line spectra agree qualitatively (Table 12.4)
 - models reproduce the observed great strengths of $[OI]\lambda 6300$, 6364 and $[SII]\lambda\lambda 6716$, 6731
 - result of the relatively large fraction of high-energy photons in the photoionizing spectrum
 - high-energy photons have a small absorption cross section
 - →a significantly larger "transition legion" than HII regions
 - \rightarrow in this transition region, H^0 , O^0 , H^+ , S^+ , and electrons can all coexist
 - →collisionally excited [OI] and [SII] lines are emitted
- the calculated H α /H β is significantly larger than the recombination value (2.85)
 - \cdot collisional excitation of H α from its ground level in this same transition zone
- · estimate total mass of the gas in the filament from luminosity and mean density
 - $\rightarrow \sim 1.5 M_{\odot}$
 - · may be larger if there are significant amounts of nearly neutral gas protected from ionizing radiation