Sec 6.5

McLean seminar 2024.08.02

- Requirement of detector: cooling for optimum performance
- Several categories of cooling system in cameras and spectrographs for ground-based :
 - 1. Thermoelectric coolers and liquid circulation coolers:
 - operate over the range -20 °C to -50 °C
 - suitable for photomultiplier tubes, CCDs which have low dark current, and telescope-guiding cameras
 - popular in CCD cameras used on small telescopes because it is much easier and simpler to use
 - 2. Liquid and solid cryogens
 - Dry ice (solid CO₂):
 - cheap and readily available
 - Temperature around -78 °C can be achieved with dry ice
 - Liquid nitrogen (LN₂):
 - relatively cheap, cools detectors to -196 °C
 - used in almost all professional CCD cameras and near-infrared devices
 - Liquid helium (LHe):
 - expensive
 - cool detectors to -269 °C
 - used for low-bandgap semiconductor materials and bolometers used in infrared instruments
 - usually pre-cooled with $\ensuremath{\text{LN}_2}$ then blown out with $\ensuremath{\text{LN}2}$ gas and the LHe transfer begun

immediately

- Cooling ability for liquid cryogens:
 - ρ: density
 - L_V : latent heat of vaporization

$$(\rho L_V)_{\rm LHe} = 0.74 \,\rm W \,h \,L^{-1}$$

$$(\rho L_V)_{\rm LN_2} = 44.7 \,\rm W \,h \,L^{-1}$$

- Meaning:
 - a 10 W heat load boils away 1 liter (L) of LHe in 0.074 hours
 - a 10 W heat load boils away 1 liter (L) of LN_2 in 4.47 hours
- Liquid neon (LNe) and liquid hydrogen (LH):
 - Intermediate solution between LHe and $\ensuremath{\text{LN}_2}$
 - rarely used in astronomy
- 3. Electrical heat engines or closed-cycle refrigerators:

- many infrared instruments and sub-millimeter/radio receivers employ multi-stage closedcycle refrigerators (CCRs)

- vibration damping is needed, especially for CCR-cooled instruments in sensitive AO system
- counter-balance weights may also required

4. ³He systems:

- sub-millimeter and far-infrared bolometers

- temperature below 0.3 K are obtained by reducing the vapor pressure on the top of the liquid helium-3

- use internal sorption pump

- Detector temperature affect on dark current and noise
- Steps in the thermal analysis of an instrument:
 - Determine what is to be actively cooled (ex. Detector only, whole instrument)
 - Tabulate the required operating temperature (ex. Detector, optics)
 - Calculate the thermal energy removed from the mass to be cooled
 - Determine the heat loads due to conduction and radiation
 - Select the appropriate cooling system
 - Estimate the cool-down time
 - Estimate the 'hold' time (for liquid cryogens)
- Heat H (joules) removed from a mass m (kg) which is cooled from a temperature T_h to T_c is given by

$$H = mC(T_h - T_c)$$

- C: specific heat of the material
- The rate of transfer of heat Q_H (in watts) by conduction along a rod of uniform cross-sectional area (A) and temperature gradient dT/dx is given by

$$Q_H = -kA\frac{dT}{dx}$$

R

- k: thermal conductivity
- Thermal resistance:
 - L: length of the conductor

$$=\frac{1}{k}\frac{1}{A/L}$$

5

- Since k is a function of temperature, it is often convenient to integrate over the required temperature range and give Q_H in the form:

$$Q_H = \frac{A}{L} [I_{T_h} - I_{T_c}]$$

- L: length of conductor
- I: tabulated property for many materials [watts/centimeter]

Temperature (K)	<i>OFHC Copper</i> (watts/cm)	6061 Aluminum (watts/cm)	Stainless steel (watts/cm)	G-10 Fiberglass (watts/cm)
300	1,520	613	30.6	1.00
250	1,320	513	23.4	0.78
200	1,120	413	16.6	0.55
150	915	313	10.6	0.37
100	700	211	6.3	0.19
77	586	158	3.2	0.11
50	426	89.5	1.4	0.07
10	25	3.6	0.03	0.005

- Power radiated from a body of area A at an absolute temperature T is given by:

$$Q_H = \varepsilon \sigma A T^4$$

- Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \,\mathrm{W \,m^{-2} \, K^{-4}}$
- ε: emissivity of the surface
- The net rate of heat transfer by radiation from a body temperature Th onto a body temperature Tc is given by:

$$Q_H = \sigma A_c F_{hc} [T_h^4 - T_c^4]$$

- F_{hc}: effective emissivity which depends on the geometry of the cryostat configuration
- The cooling time for a mass m from initial temperature T_i to T_{i+1} :

$$\Delta t_{T_i, T_{i+1}} = \frac{mC_p(T_i)[T_i - T_{i+1}]}{(A/L)k(T_i)[T_i - T_{\text{sink}}] - Q(T_i)}$$

- T_{sink} : temperature of the cold source (such as LN_2)
- Q(T): rate at which heat comes back into the mass at temperature T_i

- The larger the surface area of a cryostat, the greater the deformation due to the atmospheric pressure
 - The deflection at the center of a flat end plate clamped at its edge:

$$\delta = \frac{3(1-\mu^2)R^4}{16Ed^3}P$$

- The maximum tensile stress, which occurs at the edge, is given by:

$$S_{\max} = \frac{3}{4} \left(\frac{R}{d}\right)^2 P$$

- µ: Poisson's ratio (typically 0.3 for metals)
- E: elasticity or Young's modulus
- R: radius of the plate
- d: thickness
- P: external pressure
- The deflection of a circular plate with unclamped edges, and maximum tensile stress at the center:

$$\delta = \frac{3(1-\mu)(5+\mu)R^4}{16Ed^3}P \qquad S_{\max} = \frac{3}{8}\left(\frac{R}{d}\right)^2(3+\mu)P$$

- Design objective for a good cooling system should include the followings:
 - 1. Minimum detector movement
 - 2. Minimum effort to keep the system uniformly cold
 - 3. Good accessibility inside the cryostat
 - 4. Cost and manufacturing time
- A typical LN_2 cryostat used with a CCD is shown schematically in Figure 6.11
- Mean free path, average distance traveled between molecules collisions:

$$\lambda_{\rm mfp} = \frac{1}{\sqrt{2}n\pi d^2}$$

- n: number density of molecules
- d: diameter of the molecule

Figure 6.11. A cross-sectional view of a typical liquid-nitrogen (LN_2) cryostat illustrating all of the components needed in its construction. Credit: NOAO.

Net pumping speed of a pump: -

$$\frac{1}{S} = \frac{1}{S_{\text{pump}}} + \frac{1}{C_{\text{lines}}}$$

- S: pumping speed
- C: conductance which depends on gas pressure and viscosity
 - When mean free path is small:

$$C = 180 \frac{D^4}{L} P_{\rm av}$$

- When mean free path is large:

$$C = 12 \frac{D^3}{L}$$

- D: diameter of circular tube -
- L: length [centimeters]
- P_{av}: pressure
- Pump down time (in seconds):

$$t = 2.3 \frac{V}{S} \ln\left(\frac{P_0}{P}\right)$$

- Time required to collect refrigerant into the receiver or compressor and create a vacuum in the lowpressure side of the system
- V: volume, S: net pumping speed, P₀: initial pressure, P: final pressure