McLean Sec.9-9.2

Misato Fujii

9 Characterization and calibration of array instruments

 all imaging devices require calibration to be used for quantitative work

- how the properties of the detector are measured
- how the detector affects analysis
- \rightarrow \cdot describe steps in the calibration of CCD and other array detectors
 - signal-to-noise expressions for array instruments

9.1 FROM PHOTONS TO MICROVOLTS

- $\boldsymbol{\cdot}$ observed quantity : stream of photons
- detected quantity : small voltage(V_0) \rightarrow amplified and digitized
- N_p photons are absorbed $\rightarrow \eta G N_p$ electrons will be detected $\eta(<1)$: quantum efficiency, $G(\sim1)$: photoconductive gain
 - \cdot multiple by the charge on the electron e
 - \rightarrow total number of coulombs of charge detected

 \rightarrow voltage at the output pin of the array detector $V_0 = \frac{A_{SF}\eta GN_p e}{C}$

C: capacitance of the output node of the detector

 $A_{SF}(\sim 0.8)$: amplification or gain of the output amplifier (source follower) \Rightarrow first step : determine the quantum efficiency or QE

QE can be determined with a calibration system constructed to illuminate the detector through a known spectral passband

1. source of illumination: incandescent lamp, grating spectrometer

2. integrating sphere: randomize the light rays and produce a uniformly illuminated source

· longer wavelength \rightarrow blackbody source can be used instead of the integrated sphere

3. shutter and filter

- 4. mirror: split the light toward the detector cryostat and a calibrated photodiode
- 5. record the signal from the calibrated photodiode and obtain relative QE as a function of wavelength

Figure 9.1. A possible laboratory arrangement for calibration and characterization of CCDs.

 $\boldsymbol{\cdot}$ convert to absolute QE: require a precise calibration of illumination

- exact transmission or profile of the filter passband
 - measured in commercial spectrophotometers
- accurate determination of the solid angle on the source subtended by a pixel

 easy to obtain solid angle with a geometry controlled by baffles

 \cdot the measured QE of a deep-depletion CCD

• good agreement between 1-R and QE(η) except at the short and long ends of the wavelength

- R: reflectance
- shortest wavelength: electron-hole are created too far from the depletion region
- longest wavelength: absorption length are too long and no electron-hole pairs are created

Figure 9.3. Curves of the measured QE and reflectance of a deep-depletion CCD using the UCO/Lick automated system. Credit: Richard Stover.

• measure A_{SF}

 \cdot change the output drain voltage and observe the change in the output source voltage

 \rightarrow ratio = A_{SF}

 \cdot measure ${\it C}$

• $C = \frac{Q}{V}$ (Q: controlled charge, V: measured voltage)

• expose the detector to a substantial light level and obtain a large output signal

→dominant noise is photon noise

• measured voltage: $V = \frac{eN}{c}$ (N: total number of collected charge)

• voltage noise:
$$\sigma_V = \frac{e\sqrt{N}}{C}$$

$$\Rightarrow C = \frac{eV}{\sigma_V^2}$$

• DQE(detective quantum efficiency): QE of an idealized imaging system with no readout noise but which produces S/N ratio as the actual CCD

• S/N ratio for a CCD pixel

$$\frac{S}{N} = \frac{\eta N_p}{\sqrt{(\eta N_p + R^2)}}$$

 N_p : total number of photons incident on the pixel

R: rms value of the readout noise

• ideal detector with no readout noise

$$\begin{array}{l} \displaystyle \frac{S}{N} = \sqrt{\eta' N_p} \\ \displaystyle \rightarrow \text{DQE: } \eta' = \eta \frac{1}{\left(1 + \frac{R^2}{\eta N_p}\right)} < \eta \\ \displaystyle \cdot \text{ dependent on } N_p \end{array}$$

Table 9.1. Detective quantum efficiency (DQE) as a function of readout noise R (electrons rms) and number of incident photons N_p for two values of the true QE (30% and 60%).

Read noise R(e ⁻)	Incident number of photons (N_p)					
	1	10	100	1,000	10,000	100,000
1	6.9	22.5	29.0	29.9	30.0	30.0
	(22.5)	(51.4)	(59.0)	(59.9)	(60.0)	(60.0)
10	0.1	0.9	6.9	22.5	29.0	29.9
	(0.4)	(3.4)	(22.5)	(51.4)	(59.0)	(59.9)
100	0.001	0.009	0.1	0.9	6.9	22.5
	(0.004)	(0.215)	(0.4)	(3.4)	(22.5)	(51.4)

 \cdot digital signals actually recorded by CCD : called data numbers (DNs) or analog-to-digital units (ADUs)

must be turned back into microvolts→electrons→photons

• actual data counts or DN recorded by CCD are related to the numbers of electrons in the charge packets

$$S = \frac{(N_e + N_d)}{g} + b$$

S: recorded output signal in DNs

 N_e : number of electrons in the charge packet (ηN_p)

g: system photon transfer gain factor (electrons/DN)

b: electronic offset or bias level for an empty charge packet

N_d: residual dark current signal

 \cdot measure g

• calculate from the overall amplifier gain and the capacitance of CCD

$$g = \frac{V_{fs}C}{2^n A_g e}$$

 V_{fs} : the full-scale voltage swing allowed on the A/D unit n: the number of bits to which the A/D can digitize ⇒voltage corresponding to 1DN at the A/D unit : $V_{fs}/2^n$ A_g : the total product of all the amplifiers in the system C: CCD capacitance

• obtain several exposures of a flat-field and examine the mean signal and noise from every pixel independently (or the mean signal from a small array of pixels)

$$S_M = \frac{1}{n} \sum X_i$$
, $V_M = \frac{\sum (X_i - S_M)^2}{n - 1}$

S_M: mean of dark/bias-subtracted signal

 V_M : variance signal

X_i: data stream(count)

・ total noise: (noise)² = $p^2 + R^2$ p: photon noise on the signal photoelectrons R: readout noise in electrons from the CCD output amplifier \rightarrow convert from electrons to DN $\left(\frac{\text{noise}}{g}\right)^2 = \left(\frac{p}{g}\right)^2 + \left(\frac{R}{g}\right)^2$ $\cdot V_M = \left(\frac{\text{noise}}{g}\right)^2, p = \sqrt{gS_M}(\vec{x} \, \vec{\tau} \, \vec{\gamma} \, \vec{\gamma} \, \vec{\gamma} \, \vec{k}$ in ean number of photoelectrons

$$V_M = \frac{1}{g}S_M + \left(\frac{R}{g}\right)^2$$

$$V_M = \frac{1}{g} S_M + \left(\frac{R}{g}\right)^2$$

$$\cdot \text{ gradient: } m = \frac{1}{g}, \ V_M = \left(\frac{R}{g}\right)^2 (S_M = 0)$$

$$\rightarrow g, \ R$$

 show where the CCD or IR array begins to become non-linear and saturate

 \cdot lowest signals \rightarrow noise is dominated by the fixed readout noise

larger signals→dominated by photon noise

Variance

Figure 9.4. A plot of variance (noise-squared) vs. signal in data numbers showing the expected linear graph.

• bias level ($b \text{ in } S = \frac{(N_e + N_d)}{g} + b$): small positive reading for each pixel produced by the CCD in the no-signal conditions

• determined by a frame with zero exposure time and shutter closed

 take many bias frames and use the median of that set

 \rightarrow subtract from exposed frame, as the first step of data reduction

Figure 9.6. A clean bias frame showing no serious amplifier fixed pattern noise or faint diagonal bars due to ground-loop interference.

bias: also obtained by using an overscan

• send more pulses than required to vertically and horizontally read out the CCD (1,034 \times 1,034 instead of 1,024 \times 1,024)

• the outside area should only contain bias level signals, provided the CTE of the device is good

 derive offset of overscan in the bias frame and astronomical object frame

 \rightarrow average and subtract from the object frame

noise

 if the system is perfect and a bias frame doesn't contain fixed pattern structure

- random readout noise variations dominate
- standard deviation of the array detector \rightarrow readout noise R/g
- \cdot if there is some unavoidable fixed pattern in the bias frame
 - take the difference between two bias frames
 - measured noise distribution $\sigma = \sqrt{2}R/g$

dark current

 determined by long exposures with the CCD shutter closed

• exposure time: 1h might be needed to determine sufficiently accurate dark current

 several exposures enable cosmic-ray and radioactivity events to be counted

more significant in infrared array