McLean Sec11 Ex5&11

Misato Fujii

5 Why are CCDs not used as the silicon multiplexers for IR arrays?

CCDs do not respond >1.1um

cutoff wavelength $\lambda_c = \frac{hc}{E_G} = \frac{1.24}{E_G}$ h: Planck's constant c: speed of light bandgap energy of Si $E_G = 1.13eV$

Name	Symbol	Т (К)	E_G (eV)	λ_c (µm)
Gallium nitride	GaN	295	3.45	0.36
Silicon carbide	SiC	295	2.86	0.43
Cadmium sulfide	CdS	295	2.4	0.5
Cadmium selenide	CdSe	295	1.8	0.7
Gallium arsenide	GaAs	295	1.35	0.92
Silicon	Si	295	1.12	1.11
Germanium	Ge	295	0.67	1.85
Lead sulfide	PbS	295	0.42	2.95
Indium antimonide	InSb	295 77	0.18 0.23	6.9 5.4
Mercury cadmium telluride	$Hg_xCd_{1-x}Te$	77	$0.1 (x = 0.8) \\ 0.5 (x = 0.554)$	12.4 2.5

Table 5.2. Forbidden energy gaps for some common semiconductors.

See: http://www.semiconductorsdirect.com

11 Sketch the output signal as a function of time for an infrared array, and use the graph to illustrate what is meant by (a) single-sampling, (b) correlated double-sampling, and (c) multiple-sampling.

→signal shifts to the pedestal level →integration (detector begins to discharge due to photocurrent or dark current)

Figure 11.12. The schematic variation of the output voltage as a function of time for a typical pixel in an infrared array detector. Associated readout modes are described in the text.

11 Sketch the output signal as a function of time for an infrared array, and use the graph to illustrate what is meant by (a) single-sampling, (b) correlated double-sampling, and (c) multiple-sampling.

(b)correlated double-sampling

double-sampling, and (c) multiple-sampling.

- several ways
 - digitize the reset level
 - \rightarrow subtract the two results
 - \cdot reset the pixel

→digitize the pedestal level before moving to the next pixel ⇔eliminate kTC noise

- common with the first IR arrays
 - $\leftrightarrow \cdot \text{the reset action requires milliseconds}$
 - $\boldsymbol{\cdot}$ act of de-addressing the current pixel adds noise

RESET

11 Sketch the output signal as a function of time for an infrared array, and use the graph to illustrate what is meant by (a) single-sampling, (b) correlated double-sampling, and (c) multiple-sampling.

(c)multiple-sampling

- multiple Fowler sampling (or reset-read-read)
 - \cdot reset the entire array pixel
 - \rightarrow read out the entire array (multiple times)
 - \rightarrow digitize the signal in each pixel
 - eliminate kTC noise
 - $\boldsymbol{\cdot}$ hard to know when the array saturate
- \cdot up-the-ramp (UTR)
- sample the signal many times at regular intervals throughout the exposure
 - useful for saturated objects and space applications
- $\boldsymbol{\cdot}$ number of samples (readout): n
 - \rightarrow signal: $\times n$
 - readout noise: $\times \sqrt{n}$
 - effective readout noise in the final integrated flux: $\times \, 1/\sqrt{n}$

