AGNAGN Seminar Sec.6.6-7.2

Tomoya Yukino

6.6 Magnetic Fields

InteractionMagnetic Fields \Leftrightarrow Gas dynamicsEnergy density $E_B = B^2/8\pi$ $E_{th} = nkT$

Limit of interaction: $C_{0000} \land E \longrightarrow E$

- Case A: $E_{th} \gg E_B$
- Gas is in control, and magnetic field lines will follow the matter

Case B: $E_B \gg E_{th}$

 Magnetic field is in control, and matter will follow along magnetic field lines

Magnetic field & Shocks

Shock = discontinuous transitions between two phases(Sec.6.1 & 6.2, J-type shocks)

Shocks created by the magnetohydrodynamical(MHD) wave (C-type shock)

Interaction between magnetic field & gas

⇒**Create MHD wave**(Wave transfers in Plasma)

⇒Compress and accelerate gas

(MHD wave can move faster than the speed of sound) ⇒Create shocks

Behavior of shocks

- Non-magnetized gas Supersonic turbulence is dissipated quickly into heat
- Magnetized, ionized gas MHD wave creates coherent gas motion
 ⇒ Do not produce heat
 (Produce operated lines with supersonic breadening)

(Produce spectral lines with supersonic broadening)

6.7 Stellar Winds

Stellar winds: the outflow driven by the force of radiation

Momentum of each photon: $\frac{h\nu}{c}$ \Rightarrow Total momentum: $p = \frac{L}{4\pi r^2 c}$

(r: distance from the star, L: luminosity of the star)

If $h\nu$ (photon energy) $\ll m_e c^2$ (rest energy of the electron) \Rightarrow Electron scattering happens Cross section(independent of frequency):

$$\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{m_e c^2}\right)^2 = 0.67 \times 10^{-24} \ [\text{cm}^2] \tag{6.43}$$

Total momentum an electron by scattering (per unit time): $\dot{p} = \sigma_T p = \frac{\sigma_T L}{4\pi r^2 c}$ This (radiation pressure) will work as **outward force**

Static equilibrium: **outward force=inward pull(gravity**):

$$\dot{p} = GMm_H/r^2$$

Eddington limit

$$L_{Edd} = \frac{4\pi c G M m_H}{\sigma_T} \approx 3 \times 10^4 L_{\odot} \frac{M}{M_{\odot}}.$$
 (6.44)

&Stars more luminous than L_{Edd} will lose their outer layers

Simulations of stellar wind

Phenomena caused by stellar wind

1. Shocks

Speed of stellar wind ≫ Speed of nebular material: ⇒Creates a shock

Pressure equilibrium(stellar wind = nebular):

• Density of the wind (shock interface):

$$\rho_s = \frac{\dot{m}}{4\pi r^2 u} \,\,[\text{gm cm}^{-3}]. \tag{6.45}$$

• Shock temperature:

$$T_s = \frac{\rho}{n} \frac{u^2}{9k} \approx 0.6m_{\rm H} \frac{u^2}{9k} = 8 \times 10^6 \left(\frac{u}{1000 \text{ km/s}}\right)^2 \text{ [K]}$$
(6.46)

2. Hot gas bubble

Shock heats the gas near the star ⇒Hot inner region(radiates X-ray) & Cold outer region

Figure 6.2

A comparison of X-ray and optical images of the planetary nebula NGC 6543. The upper Chandra images are in X-ray light and the lower HST images are in the light of H α . The hot gas detected in the X-rays fills the central regions of the nebula.

3. Interaction with ionized dense gas flow

Proplyds in Orion nebular

- Disk of molecular gas surrounding lower-mass stars
 - 1. $\Theta\,1$ Ori C heats and dissociates gas in the disk
 - 2. Forms a neutral gas flow
 - 3. Ionize the gas flow
 - 4. Ionized gas flow collide with stellar wind ⇒form the faint arcs of emission

7. Interstellar Dust 7.1 Introduction

Interstellar Dust:

- Gas within HII regions and planetary nebulae contain dust particles
- Affect on the properties of the nebulae

Contents of Sec.7

- Evidence for the existence of dust in nebulae
- Effect on observational data and how to correct
- Measurement of the radiation of HII region & planetary nebulae
- Dynamical effects results from dust

7.2 Interstellar Extinction

Extinction:

- Most obvious effect of interstellar dust
- Happens due to scattering(main source), absorption(partly)

Reduction in the amount of light:

 $I_{\lambda} = I_{\lambda 0} \exp\left(-\tau_{\lambda}\right),$

(7.1) $I_{\lambda 0}$: int τ_{1} : opt

 I_{λ} : observed intensity $I_{\lambda 0}$: intrinsic intensity τ_{λ} : optical depth

When applies to stars: $I \Rightarrow \pi F_{\lambda}$

(Xif the dust is mixed with the gas, this approximation is not so good)

Number of magnitudes of extinction:

 $A_{\lambda 1} = 2.5 \log(I_{\lambda 1}/I_{\lambda 1})$

Measurement of extinction(optical depth)

1. Principle approach

Derived by spectrophotometric measurement of pairs of same spectral type stars

$$\begin{aligned} \frac{\pi F_{\lambda}(1)}{\pi F_{\lambda}(2)} &= \frac{\pi F_{0\lambda}(1) \exp\left[-\tau_{\lambda}(1)\right]}{\pi F_{0\lambda}(2) \exp\left[-\tau_{\lambda}(2)\right]} \\ &= \frac{D_{2}^{2}}{D_{1}^{2}} \exp\left\{-\left[\tau_{\lambda}(1) - \tau_{\lambda}(2)\right]\right\} \end{aligned} (7.2) \quad \leftarrow (7.1)$$

- In (7.2), optical depth depends on the ratio of distance
- Deriving distance independently is impossible
 ⇒Measure the distance with observation in long wavelength (extinction is negligible)

2. Empirical approach

Empirical law for optical depth:

$$\tau_{\lambda} = Cf(\lambda)$$

C: Constant factor, depends on the object $f(\lambda)$: Approximately the same for most stars in the Galaxy

- **2-1 Color approach**(normalized to V band)
 - 1. Measure A_B and A_V based on observed color and intrinsic color
 - 2. Take the difference between A_B and A_V (E(B-V)= $A_B - A_V$) and derive R= $A_V/E(B - V)$
 - 3. Derive $A_{\lambda}/A_{V} = f(\lambda)/f(V)$ with Fig.7.1 (standard reddening curve)

2-2 Emission line approach

Extinction on emission lines:

$$\frac{I_{\lambda_1}}{I_{\lambda_2}} = \frac{I_{\lambda_1 0}}{I_{\lambda_2 0}} \exp\left\{-C\left[f(\lambda_1) - f(\lambda_2)\right]\right\}.$$
(7.6)

(extinction can be assumed to have the average form)

C is possible to be derived with the pairs of emission line whose intrinsic intensity ratio is known

Conditions:

- Independent of physical conditions
- Easy to measure in all nebukae

Line pairs for measurement of extinction

- 1. [SII]4069, 4076/[SII]10287, 10320, 10336, 10370
 - Same upper level(4S-2P, 2D-2P transition)
 ⇒transition probabilities≒intensity ratio
 - Detection is hard(weak intensities, contamination by OH atmospheric lines)
- 2. Ratio of Paschen lines and Balmer lines(like Pa δ /H ϵ)
 - These lines arise from the excited terms with same principal quantum number
 - Weak lines
- 3. Ratios of two Balmer lines
 - Line ratio is almost independent from temperature

3. Radio continuum approach

Measure extinction with HI recombination line & radio continuum

$$j_{\nu} = \frac{1}{4\pi} n_{+} n_{e} \frac{32Z^{2}e^{4}h}{3m^{2}c^{3}} \left(\frac{\pi h\nu_{0}}{3kT}\right)^{1/2} \exp(-h\nu/kT) g_{ff}(T, Z, \nu), \quad (4.22) \quad (Optical)$$

$$g_{ff}(T, Z, \nu) = \frac{\sqrt{3}}{\pi} \left[\ln \left(\frac{8k^{3}T^{3}}{\pi^{2}Z^{2}e^{4}m\nu^{2}} \right)^{1/2} - \frac{5\gamma}{2} \right], \quad (4.30) \quad (Radio)$$

$$\frac{n_{+}\langle Z^{2} \rangle}{n_{p}} \approx 1 + \frac{n(\mathrm{He}^{+})}{n_{p}} + 4\frac{n(\mathrm{He}^{++})}{n_{p}}, \quad (7.7)$$

					T				
$n_e ({\rm cm}^{-3})$	5,000 K			10,000 K			20,000 K		
	10 ²	104	106	10 ²	10^{4}	106	10 ²	104	106
$4\pi j_{H\beta}/n_e n_p$ (10 ⁻²⁵ erg cm ³ s ⁻¹)	2.20	2.22	2.29	1.23	1.24	1.25	0.658	0.659	0.661
$\alpha_{\rm H\beta}^{df}$ (10 ⁻¹⁴ cm ³ s ⁻¹)	5.37	5.43	5.59	3.02	3.03	3.07	1.61	1.61	1.62
		В	almer-line i	ntensities re	lative to H	β			
_{JHα} /JHβ _{JHγ} /JHβ _{JH5} /JHβ _{JH15} /JHβ JH20/JHβ	3.041 0.458 0.251 0.0515 0.01534 0.00657	3.001 0.460 0.253 0.0520 0.01628 0.00819	2.918 0.465 0.258 0.0616 0.02602 0.01394	2.863 0.468 0.259 0.0530 0.01561 0.00662	2.847 0.469 0.260 0.0533 0.01620 0.00755	2.806 0.471 0.262 0.0591 0.02147 0.01058	2.747 0.475 0.264 0.0540 0.01576 0.00664	2.739 0.476 0.264 0.0541 0.01612 0.00717	2.725 0.476 0.266 0.0575 0.01834 0.00833

- 1. Estimate intrinsic intensity ratio with (4.22), (4.30), Tab4.4 and (7.7)
- 2. Derive C with observed intensity ratio and intrinsic intensity ratio