AGNAGN Sec.5.4-5.6

25/6/20

5.4 Temperature Determinations from Radio-Continuum Measurements

Nebula: optically thick for low frequency radio ⇒Emergent intensity is the same as blackbody(Planck func.) ⇒brightness temperature = temp. within the nebula

$$T_{bv} = T \left[1 - \exp(-\tau_{v}) \right] \rightarrow T \text{ as } \tau_{v} \rightarrow \infty$$
(include non-thermal synchrotron radiation/foreground radiation)
$$T_{bv} = T_{fgv} + T \left[1 - \exp(-\tau_{v}) \right] + T_{bgv} \exp(-\tau_{v}) \rightarrow T_{fgv} + T$$
(5.9)
$$as \tau_{v} \rightarrow \infty$$

$$T_{bv} = \int_{0}^{\tau} T \exp(-\tau_{v}) \, d\tau_{v}, \qquad (4.37)$$

Measure the optical depth of nebula

Considering the beam size is necessary to derive temperature

- Low frequency \rightarrow (beam size) > (nebular size)
- Sensitivity is not uniform

Overestimate optical depth

Correction and deriving distribution of optical depth are required

Derive he distribution of optical depth and temperature How to derive:

- **1** Assume nebular temperature T
- 2 Derive optical depth of high frequency radio(optically thin)

$$T_{b1} = T \left[1 - \exp\left(-\tau_1\right) \right] \to T \tau_1 \text{ as } \tau_1 \to 0, \qquad (5.10) = \text{good angular resolution}$$

③ Transform optical depth from high frequency to low frequency

$$\kappa_{\nu} = n_{+} n_{e} \frac{16\pi^{2} Z^{2} e^{6}}{(6\pi m kT)^{3/2} \nu^{2} c} g_{ff}$$

(4.31)

I lide from

- **④** Derive the brightness temperature
 - $T_{b2} = T \left[1 \exp\left(-\tau_2\right) \right]. \tag{5.11}$

(5) Check the differences between **(4)** and mean brightness temp.

			0.1.1.00
Object	Radio continuum (K)	Radio recombination (K)	Optical (K)
M42	$7,875 \pm 360$	8,500	8800
M43	$9,000 \pm 1,700$	6,700	
NGC 2024	$8,400 \pm 1,000$	8,200	
W51	$7,800 \pm 300$	7,500	
W43	$5,410 \pm 300$	5,640	
M17	$7,600 \pm 400$	$9,100 \pm 100$	
NGC 6334	7,000	7,000	
NGC 6357	6,900	7,300	

Table 5.1

References for table: Shaver et al. 1983, MNRAS, 204, 53; Subrahmanyan, R., & Goss, W. M. 1996, MNRAS, 281, 239; and papers cited therein.

Planetary nebular: Smaller than nebular ⇒ same correction is required (use H β surface brightness)

5.5 Temperature Determinations from Radio and UV Absorption Lines

HI 21cm line:

- Occurs as an electron spin-flip transition
- Possible to measure the excitation temperature T_{ex} (hyperfine structure)

$$\frac{n_u}{n_l} = \frac{\omega_u}{\omega_l} \exp(-\chi_{ul}/kT_{ex}) \begin{cases} \chi_{ul}: \text{ excitat} \\ n_{u,l}: \text{ popula} \\ \omega_{u,l}: \text{ statist} \end{cases}$$

 χ_{ul} : excitation energy of the line $n_{u,l}$: population of lower/upper level $\omega_{u,l}$: statistical weights of lower/upper level

• $T_{ex} = T$ when collisional excitation is dominant (usually, $T_{ex} \sim T$ is a good approximation)

Line optical depth & temperature: Line optical depth:

L: path length a: absorption cross $\tau = \kappa L = a(n_l - n_u \omega_l / \omega_u) L$ section (5.13)Opacity *κ*: $\kappa_{UV} = a_{UV} n_l.$ $(UV like Ly \alpha)$ $\kappa = an_l \left[1 - \exp\left(-\chi_{ul}/kT_{ex}\right) \right] \left[\mathrm{cm}^{-1} \right]$ $\kappa_{radio} = a_{radio} n_l \frac{\chi_{ul}}{kT_{ex}}$ (Radio like 21cm line) $\frac{\tau_{radio}}{\tau_{UV}} = \frac{n_{l,radio}}{n_{l,UV}} \frac{\kappa_{radio}L}{\kappa_{UV}L} = \frac{n_{l,radio}}{n_{l,UV}} \frac{a_{radio}}{a_{UV}} \frac{\chi_{ul}}{kT_{ex}}.$ $\frac{\tau_{21\rm cm}}{\tau_{\rm L\alpha}} = \frac{1}{4} \frac{a_{21\rm cm}}{a_{\rm L\alpha}} \frac{\chi_{ul}}{kT_{ex}} = \frac{1}{4} \frac{A_{21\rm cm}\lambda_{21\rm cm}^3}{A_{\rm L\alpha}\lambda_{1\,\alpha}^3} \frac{\chi_{ul}}{kT_{ex}} = 3.84 \times 10^{-7} T_{ex}^{-1}.$

5.6 Electron Densities from Emission Lines

How to measure average electron density:

Observe the effects of collisional deexcitation by comparing the intensities of two lines

- 1. Of the same ion,
- 2. Emitted by different levels,
- 3. with nearly the same excitation energy

(Examples: [OII]3729/3726, [SII]6716/6731)

Figure 5.8

Calculated variation of [O II] (*solid line*) and [S II] (*dashed line*) intensity ratios as functions of n_e at T = 10,000 K. At other temperatures the plotted curves are very nearly correct if the horizontal scale is taken to be $n_e(10^4/T)^{1/2}$.

Energy-level diagrams of the $2p^3$ ground configuration of [O II] and $3p^3$ ground configuration of [S II].

※[OII] 2 lines are so close in wavelength

tron densities in H II regions				
NGC 1976 A	0.5	3.0×10^{3}		
NGC 1976 M	1.26	1.4×10^{2}		
M 8 Hourglass	0.67	1.6×10^{3}		
M 8 Outer	1.26	1.5×10^{2}		
MGC 281	1.37	70		
NGC 7000	1.38	60		

Purpose of deriving electron density

Correction of [OIII] and [NII] for collisional deexcitation ⇒important to derive electron temperature

$$\frac{j_{\lambda4959} + j_{\lambda5007}}{j_{\lambda4363}} = \frac{7.90 \exp(3.29 \times 10^4/T)}{1 + 4.5 \times 10^{-4} n_e/T^{1/2}}.$$
(5.4)
$$[\text{N II}] \frac{j_{\lambda6548} + j_{\lambda6583}}{j_{\lambda5755}} = \frac{8.23 \exp(2.50 \times 10^4/T)}{1 + 4.4 \times 10^{-3} n_e/T^{1/2}}$$
(5.5)

Planetary nebular radiates other lines([CIII], CIII])