AGNAGN Seminar Sec.4-4.2

Tomoya Yukino

4 Calculation of Emitted Spectrum 4.1 Introduction

Radiation from nebular: depends on

Recombination line(HI, HeI, HeII)

- 1. Abundance
- 2. Temperature
- 3. Ionization
- 4. Density...

Emission line from gas nebular

 \leftarrow Radiative transitions are forbidden by the parity selection rule

Strength of emission line: possible to be calculated from **1**Cooling rate, **2**thermal equilibrium

4.2 Optical Recombination Lines HI recombination line: emitted by H atoms (capture electron into excited level ⇒downward radiative transition)

Very low density(Case A): Consider only captures and downward radiative transition ⇒equation of statistical equilibrium(level nL):

$$n_{p}n_{e}\alpha_{nL}(T) + \sum_{n'>n}^{\infty} \sum_{L'} n_{n'L'}A_{n'L',nL} = n_{nL} \sum_{n''=1}^{n-1} \sum_{L''} A_{nL,n''L''}.$$
 (4.1)

Population in the level nL(thermodynamic equilibrium):

Saha equation

Boltzman equation

$$n_{nL} = (2L+1) \left(\frac{h^2}{2\pi m kT}\right)^{3/2} \exp(X_n/kT) n_p n_e, \qquad (4.4)$$

Population in the level nL(general)

$$n_{nL} = b_{nL}(2L+1) \left(\frac{h^2}{2\pi m kT}\right)^{3/2} \exp(X_n/kT) n_p n_e, \qquad (4.6)$$

$$(4.1) + (4.6) \Rightarrow (4.7)$$

$$(b_{nL}: \text{dimensionless factors,}$$

$$b_{nL} = 1 \text{ in thermodynamic equilibrium})$$

$$\alpha_{nL} \frac{1}{(2L+1)} \left(\frac{2\pi mkT}{h^2}\right)^{3/2} \exp(-X_n/kT)$$

$$+ \sum_{n'>n}^{\infty} \sum_{L''} b_{n'L'}A_{n'L',nL} \left(\frac{2L'+1}{2L+1}\right) \exp\left[(X_{n'} - X_n)/kT\right] \qquad (4.7)$$

$$= b_{nL} \sum_{n''=1}^{n-1} \sum_{L''} A_{nL,n''L''},$$

 $b_{nL}(n > n_k)$ are known \Rightarrow All b_{nL} can be derived with (4.7) (each equation contain a single unknown b_{nL})

Cascade matrix C(nL, n'L'):

The probability that population of nL is followed by a transition to n'L' via **ALL** possible cascade routes **Probability matrix P(nL, n'L'):**

The probability that population of nL is followed by a transition to n'L' by a **DIRECT RADIATIVE TRANSITION**

$$C_{nL,n'L'} = \sum_{n''>n'}^{n} \sum_{L''=L'\pm 1}^{n} C_{nL,n''L''} P_{n''L'',n'L'}.$$

$$(4.10)$$

$$C_{nL,nL''} = \delta_{LL''},$$

$$(4.10)$$

C(nL n'L') is convenient tp express the solutions of (4.1):

$$n_p n_e \sum_{n'=n}^{\infty} \sum_{L'=0}^{n'-1} \alpha_{n'L'}(T) \ C_{n'L',nL} = n_{nL} \sum_{n''=1}^{n-1} \sum_{L''=L\pm 1} A_{nL,n''L'}.$$
(4.11)

Derive
$$C_{nL,n'L'}$$
, $\alpha_{n'L'}$ and extrapolate these series as $n \to \infty$
 \Rightarrow Find n_{nL} with (4.11)
 \Rightarrow Calculate emission coefficient $j_{nn'}$. (4.11)

 $\infty n'-1$

n-1

$$j_{nn'} = \frac{h\nu_{nn'}}{4\pi} \sum_{L=0}^{n-1} \sum_{L'=L\pm 1} n_{nL} A_{nL,n'L'}.$$
(4.12)

Observation for Case A nebular: Optically thin, small amount of gas ⇒too faint, hard to be observed

Photon emitted in an $n^2P - 1^2S$ transition: Absorbed immediately and raise another atom to n^2P level \Rightarrow Terminal of equilibrium equation: $n''=1(Case A) \Rightarrow 2(Case B)$

$$n_p n_e \sum_{n'=n}^{\infty} \sum_{L'=0}^{n'-1} \alpha_{n'L'}(T) \ C_{n'L',nL} = n_{nL} \sum_{n''=2}^{n-1} \sum_{L''=L\pm 1} A_{nL,n''L'}.$$
(4.11)

Table 4.1

 $j_{{\rm H}\varepsilon}/j_{{\rm H}\beta}$

Case A

H I recombination lines (Case A, low-density limit)

0.143

	Т					
	2,500 K	5,000 K	10,000 K	20,000 K		
$\frac{4\pi j_{\mathrm{H}\beta}/n_e n_p}{(\mathrm{erg}\ \mathrm{cm}^3\ \mathrm{s}^{-1})}$	2.70×10^{-25}	1.54×10^{-25}	8.30×10^{-26}	4.21×10^{-26}		
$\alpha_{\rm H\beta}^{eff} ({\rm cm}^3{\rm s}^{-1})$	$6.61 imes 10^{-14}$	3.78×10^{-14}	2.04×10^{-14}	1.03×10^{-14}		
	Balmer-l	ine intensities relati	ve to $H\beta$	Table		
ina/ina	3.42	3.10	2.86	2.6 HI re		
in./ine	0.439	0.458	0.470	0.48		
ius/ius	0.237	0.250	0.262	0.27		
JnorJnp	0.142	0.153	0.150	0.16		

0.250 0.153

0.159

0 107

Case B

2	Т					
	2,500 K	5,000 K	10,000 K	20,000 K		
$\frac{4\pi j_{\mathrm{H}\beta}/n_e n_p}{(\mathrm{erg}\ \mathrm{cm}^3\ \mathrm{s}^{-1})}$	3.72×10^{-25}	2.20×10^{-25}	1.24×10^{-25}	6.62 × 10 ⁻		
$\alpha_{\mathrm{H}\beta}^{eff} (\mathrm{cm}^3 \mathrm{s}^{-1})$	$9.07 imes 10^{-14}$	5.37×10^{-14}	$3.03 imes 10^{-14}$	1.62×10^{-1}		
	Balmer-1	ine intensities relativ	ve to $H\beta$			
$j_{\mathrm{H}\alpha}/j_{\mathrm{H}\beta}$	3.30	3.05	2.87	2.76		
$j_{\rm H\gamma}/j_{\rm H\beta}$	0.444	0.451	0.466	0.474		
j _{Hδ} /j _{Hβ}	0.241	0.249	0.256	0.262		
$j_{\mathrm{H}\varepsilon}/j_{\mathrm{H}\beta}$	0.147	0.153	0.158	0.162		
$j_{\rm H8}/j_{\rm H\beta}$	0.0975	0.101	0.105	0.107		
$j_{\rm H9}/j_{\rm H\beta}$	0.0679	0.0706	0.0730	0.0744		
hund/hug	0.0491	0.0512	0.0520	0.0520		

Hydrogen-like ion(like Hell)

Z: nuclear charge Transition probabilities: **proportional to** Z^4 Recombination coefficient: $\alpha_{nL}(Z,T) = Z\alpha_{nL}(1,T/Z^2)$ \Rightarrow **Possible to derive emission coefficient:**

$$j_{nn'}(Z,T) = Z^3 j_{nn'}(1,T/Z^2)$$

Table 4.3 He II recombination lines (Case B, low-density limit) T 5,000 K 10,000 K 20,000 K 40,000 K $4\pi j_{\lambda 4686}/n_e n_{{\rm He}^{++}}$ 3.14×10^{-24} 1.58×10^{-24} 7.54×10^{-25} 3.48×10^{-25} (erg cm3 s-1) $\alpha_{H\beta}^{eff}$ (cm³ s⁻¹) 7.40×10^{-13} 3.72×10^{-13} 1.77×10^{-13} 8.20×10^{-14} "Balmer"-line $(n \rightarrow 2)$ intensities relative to $\lambda 4686$ $j_{32}/j_{\lambda 4686}$ 0.560 0.625 0.714 8.15 $j_{42}/j_{\lambda 4686}$ 0.154 0.189 0.234 2.84 150/121686 0.066 0.084 0 106 1 22

Effect of collisional transition (1)HI, Hell recombination line

 nL→n(L±1) transition (Largest collisional cross sections) Collisions with protons is more effective for angular momentum changing transitions

Equilibrium equations(include collisional transitions):

$$n_{p}n_{e}\alpha_{nL}(T) + \sum_{n'>n}^{\infty} \sum_{L'=L\pm 1} n_{n'L'}A_{n'L',nL} + \sum_{L'=L\pm 1} n_{n'L'}n_{p}q_{nL',nL}$$

$$= n_{nL} \left[\sum_{n''=n_{0}}^{n-1} \sum_{L''=L\pm 1} A_{nL,n''L''} + \sum_{L''=L\pm 1} n_{p}q_{nL,nL''} \right]$$
(4.16)

$$q_{nL,n'L'} \equiv q_{nL,n'L'}(T) = \int_0^\infty u\sigma (nL \to n'L') f(u) \, du \, [\text{cm}^3 \, \text{s}^{-1}] \quad (4.17) \quad n_{nL} = \frac{(2L+1)}{n^2} n_n, \tag{4.18}$$

In He^{++} zone, both H⁺ and He^{++} must be considered

2. $nL \rightarrow (n \pm 1)(L+x)$ transition (2nd largest collisional cross sections)

- $x = \pm 1$ transition is the strongest
- It can be included in equilibrium equations by a straightforward generalization

We can consider all collisions by the same approach:

- More independent to n_e
- Enable the H-line emission coeficient

Table 4.4									
H I recombination line	es (Case B))							
					Т				
		5,000 K			10,000 K			20,000 K	
$n_e ({\rm cm}^{-3})$	10 ²	104	10 ⁶	10 ²	104	10 ⁶	10^{2}	104	106
$4\pi j_{\rm H\beta}/n_e n_p$ (10 ⁻²⁵ erg cm ³ s ⁻¹)	2.20	2.22	2.29	1.23	1.24	1.25	0.658	0.659	0.661
$\alpha_{\rm H\beta}^{eff}$ (10 ⁻¹⁴ cm ³ s ⁻¹)	5.37	5.43	5.59	3.02	3.03	3.07	1.61	1.61	1.62
		В	almer-line i	ntensities r	elative to H	β			
$j_{\mathrm{H}lpha}/j_{\mathrm{H}eta}$	3.041	3.001	2.918	2.863	2.847	2.806	2.747	2.739	2.725

2Hel recombination line

All transition probabilities between singlet and triplet are small ⇒Possible to be treated them as separate systems

1. Triplet

Transitions to 1^1S level do not occur \Rightarrow Follow Case B

2. Singlet

Case B is ordinally a better approximation

Hel $1^{1}S - n^{1}P$ line photons can photoionize H^{0} \Rightarrow Destroyed before they are converted into lower-energy photons

				Т			
	5,000 K		10,000 K			20,000 K	
$n_{e} ({\rm cm}^{-3})$	10 ²	10^{4}	10 ²	10^{4}	10 ⁶	10 ²	10 ⁴
$4\pi j_{\lambda 4471}/n_e n_{\text{He}^+}$ (10 ⁻²⁵ erg cm ³ s ⁻¹)	1.15	1.18	0.612	0.647	0.681	0.301	0.408
α_{4471}^{eff} (10 ⁻¹⁴ cm ³ s ⁻¹)	2.60	2.67	1.39	1.47	1.54	0.683	0.925
5 / D	1	Friplet line	s relative to	ο λ4471			
j25876/j24471	2.93	2.92	2.67	2.90	2.97	2.62	3.62
is une lis war	0.460	0.461	0.476	0.469	0.467	0.484	0.437