
AGNAGN seminar Sec.8.5~End of Sec.8

Tomoya Yukino

8.5 Comparison with Observations Geometry of Orion Nebula

 θ^1 Ori(Trapezium Cluster): Main ionization source

HII region:

- Layer of ionized gas
- Little of the extinction due to dust in here

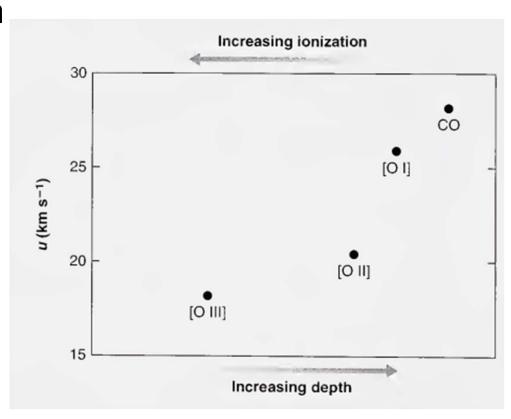
"Void" region: Radiation pressure and stellar wind blow the gas

"Veil" region:

- Main cause of extinction
- Layers of neutral gas between the sun and cluster

Radiation from each region and approaches to physical

- Neutral gas region("Veil region")
 - Radiation: **21cm absorption lines** in radio continuum from H^+ region
 - Approach: Measurement of magnetic field

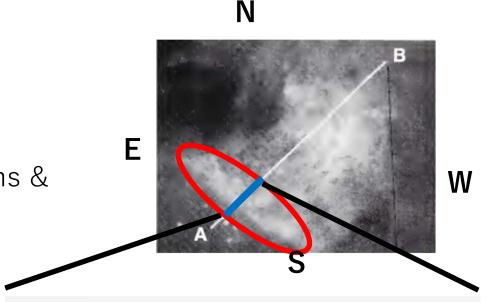

Zeeman effect:

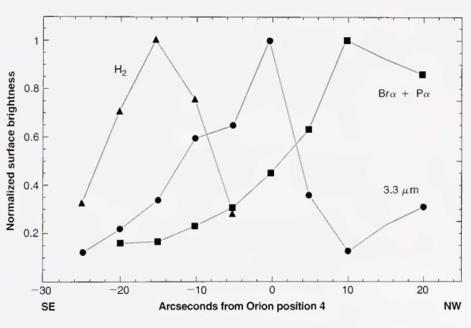
- Splitting of a spectral line into several component in the presence of a static magnetic field B
 - ⇒Line-of-sight component in Veil region is possible to be measured and mapped with 21cm line

Radiation from each region and approaches to physical

HII region near the Trapezium

- Radiation: Emission lines from various ions, atoms and moleculars
- Approach: Measurement and mapping of Velocity of gas along a line of sight


Velocity of gas measured by each emission lines (standard velocity: OMC1) (Velocity of ions with small ionization potential are $\sim 0 \, \text{km/s}$, like Fe^+ , C^+)


Radiation from "Orion bar"

- Edge-on ionization front?
- NW edge: Exposed to the central stars
 - ⇒Strong HI recombination line
- Intermediate point: Gas contains small grains & large molecules
 - \Rightarrow Strong 3.3 μ m feature
- SE side: H_2 formation happens
 - \Rightarrow Strong H_2 lines

(**Decline of emission in SE edge is due to the extinction of UV continuum)

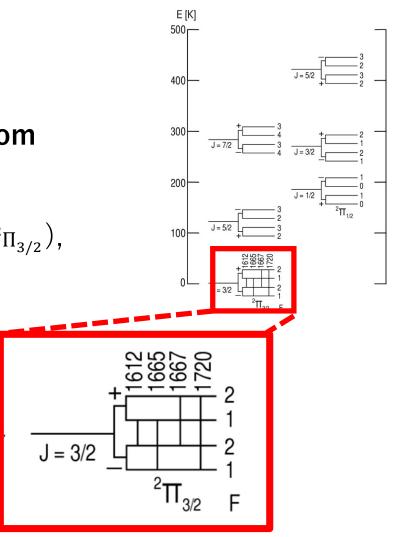
Surface brightness of blue area

Emission lines from HII region, PDR region

HII region

- Emits H β and [OIII]
- (IR lines are too weak to be detected)

PDR region


- Emits IR emission lines $(0, C, C0 \text{ and } H_2)$
- Ionized by high-energy portion of the stellar Balmer continuum (less luminosity)
- Strong extinction prevents us to detect optical lines
 - ⇒IR and radio observations are important to approach!

Line	Wavelength	Surface brightness (erg cm ⁻² s ⁻¹ sr ⁻¹)
Нβ	λ4861 Å	0.2
[O III]	λ5007 Å	0.8
[O I]	λ63 μm	$4-6 \times 10^{-2}$
[O I]	$\lambda 145 \mu\mathrm{m}$	$3-6 \times 10^{-3}$
[C II]	λ158 μm	$4-7 \times 10^{-3}$
[C I]	$\lambda 610 \mu\mathrm{m}$	7×10^{-6}
CO J = 1 - 0	$\lambda 2.59 \mu m$	6.5×10^{-7}
CO J = 2 - 1	$\lambda 1.29 \mu m$	6.0×10^{-6}
CO J = 3 - 2	$\lambda 0.863 \mu m$	1.9×10^{-5}
H ₂ (1,0) S(3)	λ1.957 μm	6.6×10^{-5}
H ₂ (2,1) S(1)	$\lambda 2.247 \mu m$	2.5×10^{-5}

8.6 Molecules Around H II Regions

OH lines

- Representative molecular emission lines from HII region
- Transition: Between the two components of the ground($^2\Pi_{3/2}$), split by hyperfine interactions
- Frequencies: 1612, 1665, 1667, 1720 MHz
- Source in HII region:
- 1. Extended region
- 2. Cluster of small sources(Size: 0.005~0.5"(Individual), 1"(Cluster))
- Narrow lines, circular/linear polarization, high brightness temperature
 - ⇒ Strong evidence for maser activity https://www.researchgate.net/figure/The-rotational-energy-level-structure-levels-are_fig1_285619489

Energy level diagram of OH

OH maser(Microwave Amplification by Stimulated Emission of Radiation)

Radiated by stimulated emission

- 1. Maser goes through population inverse region
- 2. Strengthen maser by stimulated emission
- 3. Repeat 1., 2.⇒We can observe OH maser

Energy level diagram of population inverse

OH maser from HII region

OH molecules should be dissociated by strong UV radiation

⇒Tend to occur in areas of strong extinction

(Emission lines from other molecules can be emitted from the same region)