AGNAGN seminar Sec.11.4-11.5

Tomoya Yukino

11.4 Physical Conditions from X-ray Spectroscopy

X-ray spectrum

Classification of X-ray(based on detector technology):

- Soft X-ray(<2keV)
 <p>Emission lines from various element
- Hard X-ray(>2keV)
 No emission line from abundant element, except Fe

Soft X-ray spectrum of NGC1068

(Emission lines and recombination continua are formed by the same physical process with IR and optical)

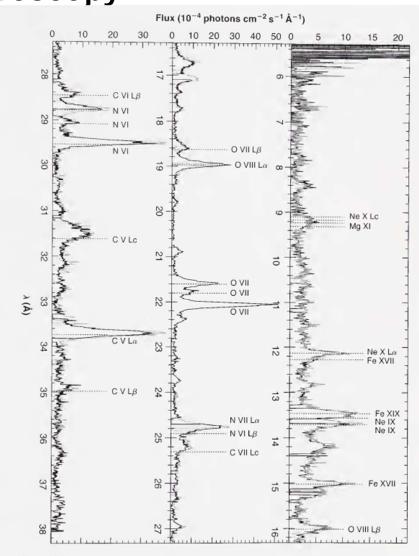
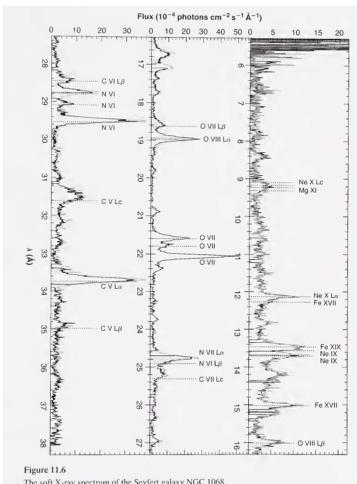


Figure 11.6
The soft X-ray spectrum of the Seyfert galaxy NGC 1068.

Representative emission lines:H-like ions

(Discuss in terms of isoelectronic Sequences)

- lons with 1 electron: discuss the same as H
- lons with 2 electrons: discuss the same as He
- Transition probability: Z^4 Energy: Z^2 (Z: atomic number)


Table 11.2		
H-like $1s-2p$ wa	velength and two-pho	ton critical density

		Tra	nsition probab	illity Critical den
Ion	λ (Å)	hν (keV)	$A(2\nu) (s^{-1})$	$n_{crit}(2s)$ (cm ⁻³)
C VI	33.74	0.366	3.8×10^{5}	5.1×10^{14}
N VII	24.78	0.499	9.7×10^{5}	1.7×10^{15}
O VIII	18.97	0.652	2.2×10^{6}	5.0×10^{15}
Si XIV	6.19	2.00	6.2×10^{7}	4.2×10^{17}
Fe XXVI	1.78	6.94	2.5×10^{9}	5.8×10^{19}

Gas temperature < excitation energies

- ⇒Emission lines are produced by recombination
- \Rightarrow 1 (2/3) Populate 2p, and produce Ly α transition
 - (2)(1/3) Populate 2s, and produce two-photon transition or Ly α

 \cap Gas density << critical electron density n_{crit} ⇒low density limit two-photon transition is dominant

The soft X-ray spectrum of the Seyfert galaxy NGC 1068.

Higher Lyman recombination lines & Environment

- 1 Case A
 - Optically thin
 - continuum striking the clouds contains no radiation within the higher-n Lyman lines

(appropriate for a cloud ionized by a hot star with strong Lyman absorption features)

- 2 Case B
 - Optically thick
 - Higher Ly photon \Rightarrow Br photon $+(Ly \alpha \text{ or two-photon cont.})$
- 3 Case C
 - appropriate when the continuum is bright in the Lyman lines (Similar environment with Case A, but contribution of continuum is strong)

Representative emission lines: He-like ions

	$-1s^2 {}^1S_0$	$-1s 2s ^3S_1$	$1s^{2} S_0$	$-1s 2p ^{3}P_{1}^{o}$	$1s^2 {}^1S_0 - 1s 2p {}^1P_1^o$	
Ion	λ (Å)	A (s ⁻¹)	λ (Å)	A (s ⁻¹)	λ (Å)	A (s ⁻¹)
CV	41.46	6.9×10^{3}	40.74	2.6×10^{7}	40.27	8.9 × 10 ¹
N VI	29.53	249	29.09	1.4×10^{8}	28.79	1.8×10^{12}
O VII	22.10	1000	21.81	5.5×10^{8}	21.60	3.3×10^{12}
Si XIII	6.743	3.4×10^{5}	6.687	1.5×10^{11}	6.645	3.8×10^{13}
Fe XXV	1.867	3.9×10^{9}	1.856	5.8×10^{13}	1.848	4.6×10^{14}

Two photon transition from n=2

Transition probability is different ⇒ relative intensities is sensitive to density

- Used for density diagnostics (range: $10^{8-12}cm^{-3}$)
- Situation: Case B or C

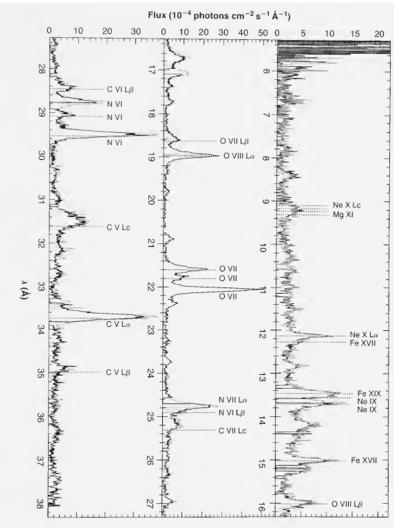
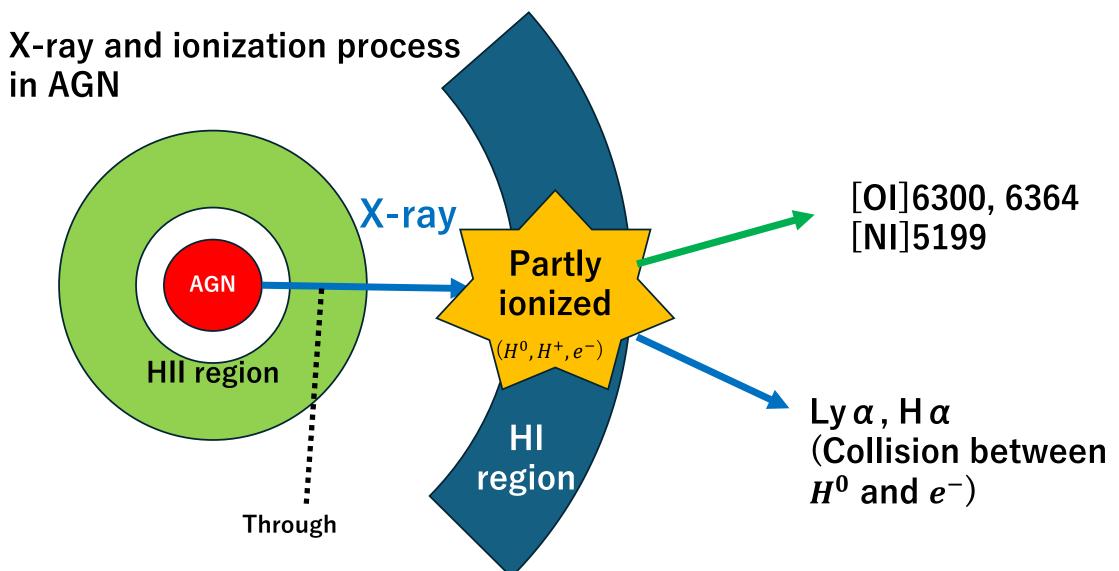


Figure 11.6
The soft X-ray spectrum of the Seyfert galaxy NGC 1068.

Characteristics of gas radiating X-ray

1. Highly ionized


- Many element have only 0~2 bound electrons
- Emit very little optical/IR, because of ①high energy transitions and ②low emissivity of optical/IR lines due to high temperature

2. (Moderate ionized)

- Strong sources of optical/UV emission
- Produce fluorescent lines, but it needs large column densities(only see examples in AGN)(Sec.11.3)

Emission line in hard X-ray: Fe K α line (Sec. 11.2)

11.5 Collisional Excitation of H°

Ly α collisional excitation (low density)

Reaction(direct excitation of the 2^2P^0):

$$H^{0}(1s^{2}S) + e \rightarrow H^{0}(2p^{2}P^{o}) + e,$$
 (11.7)

Threshold: 10.2eV

Excitation cross section arises rapidly when

(energy > threshold)

Emission coefficient(n=1 only, low density):

$$4\pi j_{L\alpha} = n_e n(H^0) q_{1^2 S, 2^2 P^o} h \nu_{L\alpha}, \qquad (11.8)$$

Threshold and required collisional strength increase with n

⇒Contribution of collisional excitation to higher level will increase (about 3~10%)

Effective of	collision strength	s for H I			
T(K)	$1^{2}S$, $2^{2}S$	$1^{2}S$, $2^{2}P^{o}$	1 ² S, 3 ² S	$1^{2}S, 3^{2}P^{o}$	$1^2S, 3^2L$
10,000	0.29	0.51	0.066	0.12	0.063
15,000	0.32	0.60	0.071	0.13	0.068
20,000	0.35	0.69	0.077	0.14	0.073

⇒consider higher n to derive (11.9)

Emission coefficient(n=1~3): Contribution of higher n

$$4\pi j_{L\alpha} = n_e n(H^0) (q_{1^2S,2^2P} + q_{1^2S,3^3S} + q_{1^2S,3^2S} + q_{1^2S,3^2D} + \cdots) h\nu_{L\alpha}. \quad (11.9)$$

Ly α emission coefficient (low density)

Equation for Recombination:

$$4\pi j_{L\alpha} = n_e n_p \alpha_{2^2 P^o}^{eff} h \nu_{L\alpha}$$

$$= n_e n_p (\alpha_B - \alpha_{2^2 S}^{eff}) h \nu_{L\alpha}$$
(11.10)

Contribution of collisional excitation vs recombination:

Table 11.4	
$L\alpha$ emission coefficients in partially ionized regions (a	all in erg cm 3 s $^{-1}$)

		density $\times 10^4 \text{ cm}^{-3}$		density $\times 10^4 \text{ cm}^{-3}$
(K)	Collisional $\frac{4\pi j_{L\alpha}}{n_e n(\mathrm{H}^0)}$	Recombination $\frac{4\pi j_{L\alpha}}{n_e n_p}$	Collisional $\frac{4\pi j_{L\alpha}}{n_e n(\mathrm{H}^0)}$	Recombination $\frac{4\pi j_{L\alpha}}{n_e n_p}$
10,000	2.56×10^{-24}	2.87×10^{-24}	4.46×10^{-24}	4.25×10^{-24}
12,500 15,000	2.62×10^{-23} 2.23×10^{-22}	2.39×10^{-24}	4.51×10^{-23}	3.53×10^{-24}
20,000	8.89×10^{-22}	$2.01 \times 10^{-24} $ 1.51×10^{-24}	$2.10 \times 10^{-22} 1.46 \times 10^{-21}$	$3.06 \times 10^{-24} $ 2.34×10^{-24}

High temperature/(High density)

⇒Collisional excitation is dominant

Excitation of neutral H and contribution to Ly α (high density)

Critical density:

$$n_c = \frac{A_2 \,_{2S,1} \,_{2S}^2}{q_2^p \,_{2S,2} \,_{2P}^2 + q_2^e \,_{2S,2} \,_{2P}^2} \approx 1.5 \times 10^4 \,[\text{cm}^{-3}]$$
 (11.11)

Collisionally Emission coefficient(high density, n=1)

$$4\pi j_{L\alpha} = n_e n(H^0) \left(q_{1^2S, 2^2S} + q_{1^2S, 2^2P} \right) h \nu_{L\alpha}$$
 (11.12) \leftarrow (11.8)

Collisionally Emission coefficient(high density, n=1~3)

$$4\pi j_{\mathbf{L}\alpha} = n_e n(\mathbf{H}^0) \sum_{n=2}^{3} \sum_{L=0}^{n-1} q_{1^2 S, n^2 S, n^2 L} h \nu_{\mathbf{L}\alpha}. \tag{11.13}$$

Recombination coefficient(high density)

$$4\pi j_{\mathrm{L}\alpha} = n_e n_p \alpha_{\mathrm{B}} h \nu_{\mathrm{L}\alpha} \tag{11.14}$$

Behavior are similar to "low density" case, but emission coefficient are larger by factors of approximately 1.5

$H\alpha$ & collisional/recombination

Under standard Case B condition, Collisional excitation to any of the levels 3^2S , 3^2P , or 3^2D leads to H α emission

Emission coefficient:

$$4\pi j_{H\alpha} = n_e n_p \sum_{L=0}^{2} q_{1^2 S, 3^2 L} h \nu_{H\alpha}.$$
 (11.15)

Table 11.5

- Strongly depends on temperature
- Not so important, comparison to Ly α (small contribution)

T	Collisional	Recombination
(K)	$\frac{4\pi j_{\mathrm{H}\alpha}}{n_e n(\mathrm{H}^0)}$	$\frac{4\pi j_{\text{H}\alpha}}{n_e n_p}$
10,000	2.12×10^{-26}	3.54×10^{-25}
12,500	3.47×10^{-25}	2.89×10^{-25}
15,000	2.28×10^{-24}	2.46×10^{-25}
20,000	2.25×10^{-23}	1.81×10^{-25}