GNHell J1236+6215: A He IT 11640 emitting and potentially LyC leaking galaxy at z = 2.9803 unveiled through JWST & Keck Discussion
Origin of narrow Hell A1640 emission

observations
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Introduction
* Pop lll stars contribute to ionize H or He™

+ detection of high ionization emission lines (e.g., He Il A1640) can be used to infer their presence
+ combined detection of Hell A1640 and Lya lines is a signature of hosting Pop Ill stellar populations (Tumlinsion et al. 2001)
+*both recombination lines can be generated by astrophysical sources other than Pop Il stars

* the cooling of pristine metal-free gas
* massive WR stars or AGN
* slow but strong wind of low-metallicity very massive stars (VMS)

* massive binary stars, winds driven by Supernova, and X-ray binaries in low metallicity environments

Data and Analysis
* GNHellJ1236+6215 (G1): He 1l A1640 emitting LBG atz = 2.9803 £ 0.001
* multi-band photometric and spectroscopic data from X-ray to radio wavelength
+ for spectroscopic analysis
+ obtain the H and Ks band MOSDEF spectra from the MOSDEF data archive
* He Il \1640 line from Keck/LRIS spectrum
+ JWST NIRSpec spectra from JADES data release
+ for photometric analysis

+ HST WFC3 UVIS and ACS images and JWST NIRCam images (total 17 photometric bands

+ SED fitting with CIGALE
+ for G1, constrain values from the emission line measurements

* BCO3 stellar population models (Bruzual & Charlot 2003) with a Chabrier IMF (Chabrier 2003)

- exponential SFH added with arecent burst of varying strength
+ spectrum (Figured)
* LRIS 1D spectrum
+ identify two rest-frame FUV emission lines (Lya A1215 and Hell A1640) with S/N> 4
+ JWST NIRSpec spectrum
+ identify other emission lines than Hell A1640
—>derive line fluxes from the respective continuum-subtracted spectra(Table4)
Discussion
Propertiesof GNHell J1236+6215(G1)
+ UV absolute magnitude (Myy) = -22.09 = 0.02 mag
* interstellar reddening E(B-V) = 0.04%0.12

* SFR from the rest-frame FUV, HB, Ha, and Pap line fluxesare 9.8+0.1,7.6+0.4,7.5+0.1,6.40£0.03 MG,yr_1

+ agree well with the SED-derived valueof 12.2+2.0 M(Dyr'1
« [SI1] BPT diagnostic (Figure5) to understand the ionized state of ISM
- * G1is in the region of star formation compared with the diagnostic relation

« closely overlap with line ratios of low-z LyC leakers and Hell A4686 emitting ionized metal-poor (IMP) galaxies

+ S23: proxy to derive the nebular oxygen abundance in a galaxy
—gas-phase oxygen abundance of the galaxy : 12 + log(O/H) = 7.85£0.22
= G1is aUV-luminous metal-poor star-forming galaxy with low dust content
Characteristics of the Hell A1640 line (Figure6)
*+ G1shows narrow FWHM (observed FWHM=573 =191 km s~ 1)
+ G1is luminous Hell emitters with Hell A1640 line luminosity of 9.55+ 1.95 % 10*! erg s~
« identify three more helium lines (HelA5875, Hell A8236, Hel A10830)
* Hell A8236 line has the same ionization potential as Hell A1640
+ HelA\10830 transition: strongest dependence on the electron density (Aver et al. 2015)
=reinforces the presence of an extreme ionizing source in G1
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Figure 5. [SI[] BPT diagram that shows the location of galaxy GN-
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Figure 6. Properties of our identified He II 41640 line is shown
along with measurements of 33 He Il emitters (hexagonal markers)
reported by Saxena et al. (2020) between redshift ~ 2.5 and 5. The

* AGN or WR stars

* narrow FWHM of the He 11A1640 linein G1

“*the expected line width from AGN or WR stars would be broader

* narrow Balmer lines (FWHM <300 km s-1)

* not distinctly identify higher-ionization emission lines (CIV A1549, NV A1240) in G1
* non-detection of G1 in 2MS Chandra X-ray catalog -3
* star-forming nature of ionization inferred from [SII] BPT diagnostic

= He+ ionization in Gl isless likely due to AGNs or metal-rich WR stars r

* infalling pristine gas

* derived SFR and UV luminosity of G1 agree with this possibility
* higher gas infall would increase star formation in the galaxy
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Figure 7. [OIII] 5007/HB vs He 11 1640/Ha line ratio of GNHell
J1236+6215 (red point). The black arrow indicates the uncertainty

+ detection of Lya linein G1 supports the pristine gas-infalling case

* Pop Ill stars

+ gas-phase metallicity of G1 contradicts the presence of metal-free Pop Il stars
“=*Pop Ill stars can form in metal-enriched galaxies at z=6-7, using hydrodynamical simulation (Venditti et al. 2024)
= - indicate thata population of metalenriched stars contribute the identified O and S lines
“2a small number of newly formed Pop Ill stars can power He+ ionization
* non-detection of strong C and N lines indicates that G1 could hold pockets of pristine gas to form Pop Il stars

* metal-poor VMS

* inclusion of VMSs can enhance the UV luminosity by 5-6 times from that of a normal SED (Schaerer et al. 2025)
=> high UV luminosity of G1 could indicate the existence of VMSs
* observed UV continuum slope (B,ps=-2.18 £ 0.06) agrees well with models produced with VMSs
=possible that the He™ ionization in G1 is driven by metal-poor VMS formed during the ongoing burst
—>Pop Il diagnostic diagrams(Figure7): distinguish the contribution of Pop Il stars fromthe others
* Hell1640/Ha ratio of G1 falls within the range of ionization by Pop Ill stars (Katz et al. 2023)
+=+[0l11] 5007/HB has a much higher value than what is expected from galaxies with only Pop Ill stars
=indicate that G1 could host small pockets of Pop IlI-like star formation along with normal populations
= * Hell A1640 emission in G1 is most likely powered either by pockets of Pop Ill stars or extremely metal-poor VMS
+ possibility of AGN or WR stars to drive He+ionization in G1 is rather low

A potential LyC leaker

+ detection of high ionization He I, [Olll], [SI1] lines in G1
=vindicates that G1 produces enough ionizing photons to ionize H, leading to an ISM transparent to LyC photons
- find favorable ISM condition in G1 that can allow LyC photons to escape
* high 032 and [SIlI])/[SI1], the presence of Balmer lines, and [SI1119069,9532 lines of G1 indicates a higher ionized state of ISM
+ observed [SIII]/[SII] value infers a higher ionization potential (logU =~ -3 - -2)
+ estimated upper limit of [O1]/[Oll1] flux ratio = 0.013 is much smaller than 032
=>supports density-bounded ionization and disfavors contribution from shock or AGN (Plat et al. 2019)
+ values of 032, metallicity, E(B-V), SFR surface density, and stellar mass of G1 fall within the regime of galaxies which host
favorable ISM condition for leaking LyC photons (Figure 8)
* G1 shows a compact morphology
=>compact nature and high SFR surface density enhance the possibility of LyC leakage in G1 (Verhamme et al. 2017)
* E(B-V) and observed B indicate a low dust extinction
=favor the escape of ionizing photons
* the ionization potential of [SII] line is smaller than H
=low [SII]/Ha signifies a density-bounded optically thin HIl region where the ionizing photons can escape efficiently

=Gl isa LyC leaker candidate atz ~ 3
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Figure 8. Gas-phase oxygen abundance 12 + log(O/H) and 032
ratio of the galaxy GNHell J1236+6215 (marked with red circle)

Summary

* report the discovery of alow-mass metal-poor He 11 A1640 emitting galaxy
GNHell J1236+6215 at z = 2.9803

* ionization by Pop Il stars formed in small pockets of pristine gas or metal -
poor VMSs formed during the ongoing burst could best explain narrow He ll
A1640 line-width in G1
favor the escape of Lyman continuum photons from G1
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Figure 4. The JWST and Keck spectra that contain all the identified emission lines. In all the panels, the observed spectral fluxes are shown in
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Table 4. Derived parameters of the identified emission lines

Emission Wavelength Observed flux Observed FWHM Rest-frame  Instrument

Line (A) x107% (ergs~'em™)  FWHM(A) (kms™) EW (A)

1) (2) 3) 4 (5) (6) O}

Lya 1215.48 23.0+54 12.2+1.4 758+90 (690) 19.2 Keck/LRIS

He IT 11640 1640.00 8.8+1.8 12.5+4.2 573+191 (526) 83 Keck/LRIS

[OII] 24959 4960.1 10.7+2.3 6.5+1.9 99429 (52) 49.8 Keck/MOSFIRE

[OIII] 45007 5008.3 59.6+2.2 11.2+0.6 169+10 (146) 248.8 Keck/MOSFIRE

Hy 4341.5 1.79+0.35 17.1£23.4  296+407" 7.0 NIRSpec G235M/F170LP
Hp 4863.4 5.44+0.37 20.7+8.9 320£137" 26.6 NIRSpec G235M/F170LP
[OII] 24959 4960.8 10.78+0.37 20.3+5.0 308+75" 55.1 NIRSpec G235M/F170LP
[OIII] 25007 5008.6 29.86+0.52 22.9+1.8 344426 1559 NIRSpec G235M/F170LP
He I 15875 5871.5 1.60+0.32 23.4437.0 300475 122 NIRSpec G235M/F170LP
Ha 6564.7 16.46+0.32 23.4+3.6 268+41° 166.5 NIRSpec G235M/F170LP
[SII] 26718 6720.0 0.75+0.19 20.1£62.4  225+700" 8.0 NIRSpec G235M/F170LP
[SII] 26732 6732.3 0.57+0.24 23.5£110.0 263+1241" 6.2 NIRSpec G235M/F170LP
[SIIT] 49069 9068.0 0.61+0.29 46.0+23.4 382195 11.1 NIRSpec G395M/F290LP
[SIIT] 29532 9533.8 2.10+0.20 34.9+8.9 276+70" 44.8 NIRSpec G395M/F290LP
He I 410830 10833.4 2.20+0.31 44.7+5.0 311+34 82.1 NIRSpec G395M/F290LP
[OII] A3727/29 373648 3.88+0.01 - - 139 NIRSpec prism

Pap 1282743 1.07+0.01 - - 534 NIRSpec prism

*The FWHM values are smaller than the limit of instrumental spectral resolution at that wavelength

Note. Table columns: (1) name of the emission line; (2) rest-frame central wavelength of the line in A as derived from the fitting; (3) line flux
in erg sec™! cm™?; (4) observed FWHM including the fitting error in A as estimated from the fitted gaussian profile; (5) line FWHM in km s~
- the values in the parenthesis (if any) represents intrinsic FWHM; (6) rest-frame equivalent width of the line in A 3 (7) The instrument used to
obtain the corresponding spectrum.
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