The AURORA Survey: A New Era of Emission-line Diagrams with *JWST/*NIRSpec

ALICE E. SHAPLEY,¹ RYAN L. SANDERS,² MICHAEL W. TOPPING,³ NAVEEN A. REDDY,⁴ DANIELLE A. BERG,⁵ RYCHARD J. BOUWENS,⁶ GABRIEL BRAMMER,⁷ ADAM C. CARNALL,⁸ FERGUS CULLEN,⁸ ROMEL DAVÉ,⁸ JAMES S. DUNLOP,⁸ RICHARD S. ELLIS,⁹ N. M. FÖRSTER SCHREIBER,¹⁰ STEVEN R. FURLANETTO,¹ KARL GLAZEBROOK,¹¹ GARTH D. ILLINGWORTH,¹² TUCKER JONES,¹³ MARISKA KRIEK,⁶ DEREK J. MCLEOD,⁸ ROSS J. MCLURE,⁸ DESIKA NARAYANAN,¹⁴ PASCAL OESCH,¹⁵ ANTHONY J. PAHL,¹⁶ MAX PETTINI,¹⁷ DANIEL SCHAERER,¹⁵ DANIEL P. STARK,³ CHARLES C. STEIDEL,¹⁸ MENGTAO TANG,³ LEONARDO CLARKE,¹ CALLUM T. DONNAN,⁸ AND EMILY KEHOE¹

Introduction

- Recombination and collisionally-excited emission lines from star-forming regions
- \rightarrow interplay between massive stars, gas, dust, and heavy elements in the ionized ISM
- rest-optical emission line properties of star-forming galaxies at $z \sim 2-3$

→photoionization by chemically-young massive stars

- AURORA JWST/NIRSpec program : detect faint auroral lines from ionized O, S, and N for z > 1.4 galaxies \rightarrow direct chemical abundances
 - high S/N measurements of emission-line ratio diagrams for individual high-z galaxies
 - rest-frame blue-optical emission-line diagnostics for z > 10 spectra
 - first statistical sample of rest-frame near-IR diagnostics for star-forming galaxies at z > 1

Observations

AURORA NIRSpec observations : COSMOS field and GOODS- N

 \cdot R ~ 1000 & wavelength range ~1 – 5 μ m

AURORA targets selection

AURORA sample of 97

 \rightarrow measured redshifts and emission-line fluxes for 95 galaxies (Figure 1) →identify star-forming galaxies by removing AGNs and quiescent galaxies

→several emission-line-ratio diagrams of 87 of star-forming galaxies (z=1.4-7.5)

comparison with z~0 galaxies and H II regions

- $\cdot\,$ z~0 galaxies : SDSS DR7, MaNGA for relationship between [OIII] λ 5007 and [SIII]/[SII]
- H II regions : CHAOS survey (DIG-free)

• SDSS emission-line spectra of $z \sim 0$ galaxies include the contributions of both H II regions and diffuse ionized gas (DIG)

⇔emission-line ratio diagrams include [OI] and [SII] emission were compared with local H II regions

Results & Discussion

Classical emission-line diagrams

• BPT diagrams (Figure 4)

- \cdot higher [NII] $\lambda 6583/H\alpha$ and [OIII] $\lambda 5007/H\beta$ than z \sim 0 star-forming galaxies
- · higher [OIII] $\lambda 5007/H\beta$, [SII] $\lambda\lambda 6717,\,6731/H\alpha,$ and [OI] $\lambda 6300/H\alpha$ than local H II regions

⇒photoionization by harder ionizing spectrum at fixed nebular metallicity than low-z star-forming galaxies

- z = 2.7 4.0 sample is further offset from the z ~ 0 sequence than the z = 1.4 2.7 sample in [NII] diagram
 target redshift distribution is skewed to z = 1.4 4
- target redshift distribution is skewed to z = 1.4 4 \Rightarrow larger sample of $z \sim 4 - 6.5$ with the same wavelength coverage and comparable depth are required • typical [NIII] 6582 (Hg line ratios ($M = 10^8 - 10^{10} M = 34$): 0.02, 0.06 (e.g. Shapley et al. 2023b)
- typical [NII] λ 6583/H α line ratios ($M_* = 10^8 10^{10}M_{\odot}$, z>4) : 0.03-0.06 (e.g. Shapley et al. 2023b) \Leftrightarrow large dynamic range in [NII] λ 6583/H α , even at z > 6 (AURORA)
- \Rightarrow require much larger samples in [NII] BPT diagram at z > 4

· [OIII]λ5007/[OII]λ3727 (O32) vs. ([OII]λ3727+[OIII]λλ4959, 5007)/Hβ (R23) (Figure 5)

- to investigate the combination of ionization parameter and metallicity in star-forming galaxies
- higher average O32 at increasing redshift
- 20 galaxies with $\log(R23) \ge 1$
- virtually no corresponding measurements of local star-forming galaxies at high log(R23) values
- hardening the ionizing spectrum at fixed nebular metallicity in photoionization models produces higher peak R23 values at fixed O32 in photoionization models
- ⇔detail photoionization modeling of the ionization parameter and ionizing spectrum of individual galaxies with direct metallicity estimates are required

Results & Discussion

Emission-line diagnostic diagram based on bluer rest-frame optical features (Figure 6)

 \cdot to understand the physical properties of the ISM in high-z galaxies

- in space of ionization and metallicity
 - · [NeIII] λ 3869/[OII] λ 3727 ratio serves as O32
 - ([NeIII]λ3869+[OII]λ3727)/Hδ serves as R23
- overlap with the high [NeIII] λ 3869/[OII] λ 3727, low ([NeIII] λ 3869+[OII] λ 3727)/H δ tail of $z \sim 0$ distribution
- \cdot higher [NeIII] λ 3869/[OII] λ 3727 and lower ([NeIII] λ 3869+[OII] λ 3727)/H δ at increasing redshift
- \cdot GN-z11 and the z \sim 5.5 9.5 stacks are consistent with the z > 5 of the AURORA sample
- exception : auroral target GOODSN-30274 (z = 1.800, red) & filler target GOODSN-917107 (z = 4.773, blue)
 similar line ratios with GN-z11
- \rightarrow insights into the detailed nature of GN-z11

Emission-line diagnostic diagram based on longer wavelength

• [SIII]λλ9069,9532/[SII]λλ6717,6731 (S32) (Figure7)

- \cdot probe of the ionization parameter and ionization state of the ISM in z \sim 0 galaxies
- · differentiate between the effects of an evolving ionizing spectrum or ionization parameter at fixed nebular metallicity in high-z star-forming regions with the [OIII] λ 5007/H β ratio
 - offset from local H II regions
 - · towards lower S32 at fixed [OIII] λ 5007/H β
 - ⇒harder ionizing spectrum at fixed nebular metallicity

<u>rest-frame near-IR line ratios (Figure 8)</u>

- recent JWST works on rest-frame near-IR emission lines in distant galaxies feature [FeII] λ 1.257µm/Pa β ratio
- pair with He I λ 1.083 μ m/Pay (Brinchmann 2023) or [SIII] λ 9532/Pay (Calabrò et al. 2023)
- compare with Cloudy photoionization models (Ferland et al. 2017)
- \cdot a dust depletion factor of 20 for Fe
- AURORA sample can be explained by photoionization by massive stars
- · median [FeII] λ 1.257µm/Pa β is 0.2 (corresponds to [FeII] λ 1.257µm/H β = 0.03)
- $\boldsymbol{\cdot}$ within the range of stellar photoionization model predictions
- lower than sample of local starbursts (0.34) (Calzetti 1997)
- →constrain the origin of [FeII] emission in distant star-forming galaxies

• significant systematic uncertainty between measurements and models is associated with the assumed dust depletion factor for Fe

• better constraints on dust depletion for Fe incorporating metallicity dependence in distant star-forming galaxies are important

Figure 0. [NeIII] λ 3869+[OII] λ 3727)/H δ , corrected for dust. Symbols

Conclusion

AURORA sample enabled high S/N measurements of individual high-z galaxies →evolution of ISM and chemical enrichment

 $larger\,sample\,will\,be\,collected\,for\,detail\,interpreting\,the\,emission\mbox{-line}\,diagnostic\,diagrams$

Figure 4. "Classical" Emission-line Diagnostic Diagrams. In each panel, galaxies from the AURORA sample are plotted with colored symbols. Figure 8. Rest-frame Near-IR Emission-line Ratios. Symbols for AURORA galaxies are as in Figure 4. Plotted in each panel are Cloudy