AGNAGN Seminar Sec4-4.End

Misato Fujii

4.4 Radio-Frequency Continuum and Line Radiation

• "thermal" radio-frequency radiation: extinction of the optical line and continuous spectra

↔radiation in radio-frequency region is somewhat different from the optical region

• in radio-frequency region, $h\nu \ll kT$ and stimulated emission (proportional to $\exp(-h\nu/kT)$) are important

continuous spectrum in radio-frequency region

- continuum is from free-free emission
 - \cdot emission coefficient is given by (4.22) same as in the optical region

$$j_{\nu} = \frac{1}{4\pi} n_{+} n_{e} \frac{32Z^{2}e^{4}h}{3m^{2}c^{3}} \left(\frac{\pi h\nu_{0}}{3kT}\right)^{1/2} \exp(-h\nu/kT) g_{ff}(T, Z, \nu), \quad (4.22)$$

• in radio-frequency region, Gaunt factor g_{ff} is($\gamma = 0.577$: Euler's constant)

$$g_{ff}(T, Z, \nu) = \frac{\sqrt{3}}{\pi} \left[\ln \left(\frac{8k^3 T^3}{\pi^2 Z^2 e^4 m \nu^2} \right)^{1/2} - \frac{5\gamma}{2} \right], \qquad (4.30)$$

free-free effective absorption coefficient can be derived Kirchhoff's law

$$\kappa_{\nu} = n_{+} n_{e} \frac{16\pi^{2} Z^{2} e^{6}}{(6\pi m kT)^{3/2} \nu^{2} c} g_{ff}$$
(4.31)

 \cdot effective absorption coefficient is difference between the true absorption coefficient and the stimulated emission coefficient

- stimulated emission of photon: negative absorption process
 - when $h\nu \ll kT$, stimulated emission \simeq true absorption and correction
 - correction for stimulated emission: $[1 \exp(-h\nu/kT)] \approx h\nu/kT \ll 1$

continuous spectrum in radio-frequency region

 \rightarrow substitute numerical value

$$= 8.24 \times 10^{-2} T^{-1.35} v^{-2.1} \int n_{+} n_{e} \, ds$$
$$= 8.24 \times 10^{-2} T^{-1.35} v^{-2.1} E_{ev}$$

(E_c : continuum emission measure)

⇒at sufficiently low frequency, all nebulae become optically thick

 $\tau_v = \int \kappa_v \, ds$

- in fact, many nebulae are optically thick at low frequency and optically thin at high frequency
- · for no incident radiation, the solution of equation of radiative transfer

$$I_{\nu} = \int_0^{\tau_{\nu}} B_{\nu}(T) \exp(-\tau_{\nu}) d\tau_{\nu}.$$

in radio-frequency region

 $B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1} \approx \frac{2\nu^2 kT}{c^2} \quad : \text{proportional to T}$ $\Rightarrow T_{b\nu} = \int_0^{\tau} T \exp(-\tau_{\nu}) d\tau_{\nu}, \qquad (T_{bn} = c^2 I_{\nu} 2\nu^2 k: \text{brightness temperature})$

• for isothermal nebula, $T_{b\nu} = T[1 - \exp(\tau_{\nu})] \begin{bmatrix} \rightarrow T \tau_{\nu} (\tau_{\nu} \rightarrow 0) \\ \rightarrow T (\tau_{\nu} \rightarrow \infty) \end{bmatrix}$ $\Rightarrow T_{b\nu}$ varies as ν^{-2} at high frequency and is dependent of ν at low frequency

Recombination line spectrum in radio-frequency

 $\boldsymbol{\cdot}$ emission coefficient in radio recombination line can be calculated as optical recombination line

- in radio-frequency region, only n_n need to be considered $(n > n_{CL})$
- additional process to those described in Sec4.2(optical region)
- collisional ionization of levels with large n and its inverse process (three-body recombination)

$$\mathrm{H}^{0}(n) + e \Leftrightarrow \mathrm{H}^{+} + e + e.$$

- rate of collisional ionization from level *n*: $n_n n_e u \sigma_{ionization}(n) = n_n n_e q_{n,i}(T)$,
- rate of three-body recombination: $n_p n_e^2 \phi_n(T)$

$$\Rightarrow \phi_n(T) = n^2 \left(\frac{h^2}{2\pi m k T}\right)^{3/2} \exp(X_n/kT) q_{n,i}(T).$$
 (from (4.6), (4.18), principle of balance)

Recombination line spectrum in radio-frequency

 \Rightarrow equilibrium equation at high n:

$$n_{p}n_{e}\left[\alpha_{n}(T) + n_{e}\phi_{n}(T)\right] + \sum_{n'>n}^{\infty} n_{n'}A_{n',n} + \sum_{n'=n_{0}}^{\infty} n_{n'}n_{e}q_{n}$$
$$= n_{n}\left[\sum_{n'=n_{0}}^{n-1} A_{n,n'} + \sum_{n'=n_{0}}^{\infty} n_{e}q_{n,n'}(T) + n_{e}q_{n,i}(T)\right],$$

'n

 $A_{n,n'} = \frac{1}{n^2} \sum_{L,L'} (2L+1) A_{nL,n'L'}$

: mean transition probability averaged

over all the L levels

- \cdot can be expressed by coefficient b_n instead of n_n
 - \cdot b_n : defined by thermodynamic equilibrium at local T, n_e , n_p

 $\cdot \ b_n \to 1 \ (n \to \infty)$

 \cdot solution can be found numerically by standard matrix-inversion techniques

• Figure 4.2: calculated values of b_n

 \cdot as n_e increse, the importance of collisional transitions increase and $b_n\approx 1$ at even lower n

Recombination line spectrum in radio-frequency

 \cdot to calculate the emission in specific recombination line

 solve the equation of transfer with the effects of stimulated emission

line-absorption coefficient corrected for stimulated emission:

 $k_{\nu l} = k_{\nu l} \left(1 - \frac{b_m}{b_n} \exp(-h\nu/kT) \right) (k_{\nu l}: \text{true line-absorption coefficient})$

from the equation of transfer

 $\cdot m = n + \Delta n$: upper level

net difference between the rates of absorption and emission
 →expand in a power series:

$$k_{\nu L} = k_{\nu l} \left(\frac{b_m}{b_n} \frac{h\nu}{kT} - \frac{d \ln(b_n)}{dn} \Delta n \right).$$

• $b_m/b_n \approx 1$, $h\nu \ll kT$

 \Rightarrow if $(d \ln b_n)/dn$ become sufficient large, $k_{\nu l}$ become negative (positive maser action)

• Figure 4.2: calculated values of $(d \ln b_n)/dn$ \Rightarrow maser effect is quite important

Figure 4.2 Dependence of b_n and $d \ln b_n/dn$ on n at various densities, all at T = 10,000 K.

4.5. Radiative Transfer Effects in HI

for most of the emission lines observed in nebulae, there isn't radiative-transfer problem
 in some lines, the optical depth are appreciable

- ⇒scattering and absorption must be considered in calculating the expected line strengths
- $\boldsymbol{\cdot}$ especially the resonance lines of abundant atoms
- two extreme assumptions (Case A and Case B) do not require a detailed radiative-transfer solution
 ↔ in the intermediate cases, more sophisticated treatment is necessary
- $\boldsymbol{\cdot}$ other radiative-transfer problem arise
 - Hel triplets

 \cdot conversion of HeII L α and HI L β into OIII or OI line radiation by Bowen resonance-fluorescence process

fluorescence excitation of other lines by stellar continuum radiation

Line absorption coefficient with line-broadening

 $\boldsymbol{\cdot}$ in a static nebula, the line-broadening mechanisms are only thermal Doppler broadening and radiative damping

 \cdot in the core of the lines, radiative damping can be neglected

⇒line-absorption coefficient has the Doppler form

$$\kappa_{\nu l} = k_{0l} \exp\left[-\left(\Delta\nu/\Delta\nu_D\right)^2\right] = k_{0l} \exp(-x^2) \quad [\text{cm}^2],$$

$$k_{0l} = \frac{\lambda^2}{8\pi^{3/2}} \frac{\omega_j}{\omega_i} \frac{A_{j,i}}{\Delta\nu_D} = \frac{\sqrt{\pi}e^2 f_{ij}}{mc\Delta\nu_D} \quad [\text{cm}^2] \quad : \text{line-absorption cross section at the center of the}$$

$$k_{0l} = \sqrt{\frac{2kT}{2kT}} \nu_{j} \quad [\text{Hz}]: \text{ thermal Doppler width}$$

line

• $\Delta v_D = \sqrt{\frac{m_H c^2}{m_H c^2}} v_0 [Hz]$: thermal Doppler width

• f_{ij} : absorption oscillator strength between the lower(i) and upper level(j)

 \cdot small-scale micro-turbulence can be a further source of broadening of the line-absorption coefficient

 $\cdot \ \Delta \nu_D^2 = \Delta \nu_{thermal}^2 + \Delta \nu_{turbulent}^2$

larger scale turbulence and expansion of the nebula

 \cdot consider the frequency shift between the emitting and absorbing volumes

Escape probability of photon from the nebula

· photon emitted at a particular point in a particular direction with frequency χ in a static nebula

- probability of escaping from nebula without further scattering and absorption: $exp(-\tau_{\chi})$
 - $\cdot \tau_{\chi}$: optical depth from the point to the edge of the nebula
 - $\boldsymbol{\cdot}$ average over the frequency profile of the emission coefficient
 - \rightarrow mean escape probability from the point
- $\boldsymbol{\cdot}$ for the forbidden lines and most of the other lines
 - $\boldsymbol{\cdot}$ the optical depths are so small in every direction
 - ⇒mean escape probabilities from all points: 1
- ⇔ for lines of larger optical depth, need to examine the escape probability

Mean escape probability

• idealized spherical homogeneous nebula with optical radius in the center of line (τ_{0l})

 \cdot for $\tau_{0l} < 10^4,$ only Doppler core of the line-absorption cross section need to be considered

- photons are emitted with same Doppler profile
- mean escape probability must be averaged over this Doppler profile
- mean escape probability averaged over all directions and volumes

•
$$p(\tau_{\chi}) = \frac{3}{4\tau_{\chi}} \left[1 - \frac{1}{2\tau_{\chi}^2} + \left(\frac{1}{\tau_{\chi}} + \frac{1}{2\tau_{\chi}^2}\right) \exp(-2\tau_{\chi}) \right].$$

 $\cdot \tau_{\chi}$: optical radius of the nebula at a particular normalized frequency χ

 \rightarrow average over the Doppler profile

 \rightarrow mean escape probability for photon emitted in the line: $\varepsilon(\tau_{0l}) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} p(\tau_x) \exp(-x^2) dx$

• for optical radii ($\tau_{0l} \leq 50$), can be fitted with $\varepsilon(\tau_{0l}) = \frac{1.72}{(\tau_{0l} + 1.72)}$

Lyman-line spectra from the nebula

• if photons do not escape from the nebula, they are absorbed by another hydrogen atom

- \cdot each absorption process represents an excitation of the n^2P^o level of HI
 - excited level undergoes a radiative decay very quickly
 - $ightarrow \cdot$ resonance scattering
 - resonance fluorescence excitation of another HI line
 - photon emitted in a $1^2S n^2P^o$ transition \rightarrow process is resonance scattering of Ln photon
 - photon emitted in the $2^2S n^2P^O$ transition \rightarrow process is conversion of Ln into Hn and

excitation of 2^2S

 \rightarrow emission of two photons in the continuum

• photon emitted in the $3^2S - n^2P^0$ transition \rightarrow process is conversion of Ln into Pn and excitation of 3^2S

 \rightarrow emission of H α and L α

• $P_n(Lm)$ ($P_n(Hm)$): probabilities that absorption of Ln photon results in emission of Lm(Hm) photon $P_n(Lm) = C_{n1m1}P_{m1,10}$

 \Rightarrow

(probability matrices $C_{nL,n'L'}$ and $L_{nL,n'L'}$ (Sec4.2))

 $P_n(\mathbf{H}m) = C_{n1,m0}P_{m0,21} + C_{n1,m1}P_{m1,20} + C_{n1,m2}P_{m2,21}.$

Lyman line spectra from the nebula

 \rightarrow calculate the Lyman-line spectrum emitted from a model nebula

 $\cdot J_n$: total number of Ln photons emitted in the nebula per unit time

•
$$J_n = R_n + \sum_{m=n}^{\infty} A_m P_m(\operatorname{L}n).$$

 $\cdot R_n$: total number of Ln photons generated in the nebula by recombination and subsequent cascading

 $\cdot A_n$: total number of Ln photons absorbed in the nebular

→total number of Ln photons escaping the nebula per unit time

• $E_n = \varepsilon_n J_n = \varepsilon_n \left[R_n + \sum_{m=n}^{\infty} A_m P_m(Ln) \right]$ (ε_n : escape probability of each Ln photon emitted)

• in a steady state, the number of Ln photons emitted = the numbers absorbed and escaping

$$\rightarrow J_n = A_n + E_n = A_n + \varepsilon_n J_n.$$

• eliminate
$$J_n \rightarrow A_n = (1 - \varepsilon_n) \left[R_n + \sum_{m=n}^{\infty} A_m P_m(L_n) \right],$$

 \Rightarrow solve for A_n (R_n , $P_m(Ln)$, ε_n are known)

 \Rightarrow E_n can be calculated , giving the emergent Lyman-line spectrum

Balmer-line spectra from the nebula

 $\boldsymbol{\cdot}$ suppose that there is no absorption of Balmer-line photons

 \cdot S_n : number of Hn photons generated in the nebula by recombination and subsequent cascading

• K_n : total number of Hn photons emitted in the nebula

$$\overrightarrow{K}_n = S_n + \sum_{m=n}^{\infty} A_m P_m(Hn).$$

 \Rightarrow calculate K_n

• S_n , $P_m(Hn)$, A_m are known

⇒obtain the emergent Balmer-line spectrum

- R_n , S_n , J_n , K_n , A_n are proportional to the total number of photons
- equations are linear to these quantities

 \Rightarrow entire calculation can be normalized to any S_n (S_4 : number of H β photons)

 \rightarrow can calculate the ratio of H α /H β , H β /H γ

Balmer-line spectra from the nebula

 \cdot in most nebulae, the optical depth in the Balmer lines are small

 \Leftrightarrow in the case that the density $n(H^0, 2^2S)$ is sufficiently high, some self-absorption could occur in Balmer lines

- optical depth in Balmer lines can be calculated from (4.45)
 - optical depth is proportional to $n(H^0, 2^2S)$
 - \rightarrow radiative-transfer problem is now a function of two variables ($\tau_{0l}(L\alpha), \tau_{0l}(H\alpha)$)
 - \rightarrow equation are much more complicated
 - same general type of formula as Lyman-line absorption
 - \Rightarrow for here, discuss physically the calculated results (Figure 4.3)

Discussion of Figure 4.3

- for $\tau_{0l}(H\alpha) = 0$
 - as $\tau_{0l}(L\alpha)$ increase, L β is converted into H α and two-photon continuum
 - \rightarrow H α /H β ratio of the escaping photon increase \rightarrow move of the point to the right in Figure4.3
- for slightly large $\tau_{0l}(L\alpha)$, L γ is converted mainly H β \rightarrow move of the point to downward and to the left in Figure 4.3
- \cdot for still larger $au_{0l}(Llpha)$, higher Ln photons are converted
 - \rightarrow H γ is strengthened
- \rightarrow taking into all effects,

 \cdot representative point describes the small loop as the conditions change from Case A to Case B

• for large $\tau_{0l}(L\alpha)$, as $\tau_{0l}(H\alpha)$ increase, $H\alpha$ is merely scattered (formed $L\beta$ photons are quickly absorbed and converted back to $H\alpha$), and $H\beta$ is absorbed and converted to $H\alpha$ and $P\alpha$

 \rightarrow H α /H β increase and H β /H γ decrease as in Figure 4.3

Figure 4.3

Radiative transfer effects caused by finite optical depths in Lyman and Balmer lines. Ratios of total emitted fluxes $H\alpha/H\beta$ are shown for homogeneous static isothermal model nebulae at T = 10,000 K. Each line connects a series of models with the $\tau_{0l}(L\alpha)$, given at the end of the line; along it $\tau_{0l}(H\alpha) = 5$ and 10 at the two points along each line indicated by bars for $\tau_{0l}(L\alpha) \ge 400$.

4.6. Radiative Transfer Effects in Hel

- recombination radiation of HeI singlets is similar to HI
- \cdot Case B is a good approximation for HeI Lyman lines
- ↔ $He^{0}, 2^{3}S$ is more metastable than $H^{0}, 2^{2}S$ ⇒self-absorption effects are important

Figure 4.4

Partial energy-level diagram of He I, showing strongest optical lines observed in nebulae. Note that $1^{2}S$ has been omitted, and terms with $n \ge 6$ or $L \ge 3$ have been omitted for the sake of space and clarity.

- $2^{3}S$ is the lowest triplet in He and recaptures to triplets tend to cascade down to $2^{3}S$
- depopulation from 2^3S occurs only by
 - \cdot photoionization especially by HI L α
 - \cdot collisional transitions to 2^1S and 2^1P^o
 - strongly forbidden $2^{3}S 1^{1}S$ radiative transition

 $\Rightarrow n(2^{3}S)$ is large and optical depth in lower $2^{3}S - n^{3}P^{o}$ lines significant

• $2^{3}S - 2^{3}P^{o}(\lambda 10830)$ photons are simply scattered

· absorption of $2^{3}S - 3^{3}P^{o}(\lambda 3889)$ photons can lead conversion to $3^{3}S - 3^{3}P^{o}(\lambda 4.3 \mu m)$, $2^{3}P - 3^{3}S(\lambda 7065)$, $2^{3}S - 2^{3}P^{o}(\lambda 10830)$

 \cdot at larger $\tau_{0l}(\lambda 10830),$ higher numbers of $2^3S-n^3P^o$ are converted into longer wavelength photons

Figure 4.6

Schematized partial energy-level diagrams of [O III] and He II showing coincidence of He II L α and [O III] $2p^{2} {}^{3}P_{2}$ - $3d {}^{3}P\lambda 303.80$. The Bowen resonance fluorescence lines in the optical and near-ultraviolet are indicated by solid lines, and the far-ultraviolet lines that lead to excitation or decay are indicated by dashed lines. There are six observable lines in all leading down from $3d {}^{3}P_{2}^{o}$, and 14 from $3p {}^{3}P_{2,1}$, $3p {}^{3}S_{1}$, and $3p {}^{3}D_{3,2,1}$, and with relative strengths that can be calculated just from the ratios of transition probabilities.

Optical depth for Hel

- radiative transfer problem is similar to Lyman lines
 - \cdot handled by the same kind of formalism

 \cdot thermal Doppler width of HeI lines is smaller than HI lines

⇒turbulent or expansion velocity in nebula is important in broadening the Hel lines

simplest example: model spherical nebula expanding with a velocity

$$\rightarrow \quad U_{\exp}(r) = \omega r; \ 0 \le r \le R;$$

 \rightarrow relative radial velocity between any two points in the nebula (r_1, r_2) : $u(r_1, r_2) = \omega s$,

- s: distance between the points
- $\cdot \omega$: constant velocity gradient

 \rightarrow photons emitted at r_1 have a line profile centered on the line frequency v_L where r_1 is at rest

 \cdot at r_2 , encounter material absorbing with a profile centered on the frequency

$$\rightarrow v'(r_1, r_2) = v_L \left(1 + \frac{\omega s}{c} \right),$$

Optical depth for Hel

 \rightarrow optical depth in a particular direction to the boundary of the nebula for a photon emitted at r_1 with frequency ν :

$$\tau_{\nu}(r_{1}) = \int_{0}^{r_{2}=R} n(2^{3}S)k_{0l} \exp\left\{-\left[\frac{\nu - \nu'(r_{1}, r_{2})}{\Delta\nu_{D}}\right]^{2}\right\} ds.$$

Figure 4.5

Radiative transfer effects due to finite optical depths in He I λ 3889 2 ${}^{3}S$ -3 ${}^{3}P^{o}$. Ratios of emergent fluxes of λ 7065 and λ 3889 to the flux in λ 4471 are as a function of optical radius $\tau_{0}(\lambda$ 3889) of homogeneous static ($\omega = 0$) and expanding ($\omega \neq 0$) isothermal nebulae at T = 10,000 K.

 \Rightarrow at a fixed density $n(2^{3}S)$, as velocity of expansion increase, optical depth decreases, and selfabsorption effects decrease

• Figure4.5:

• ratio of intensities of $\lambda 3889$ (weakened by self-absorption) and $\lambda 7065$ (strengthened by resonance fluorescence) to the intensity $\lambda 4471(2^3P^o - 4^3D)$, only slightly affected by absorption)

· ratio of the expansion velocity $u_{exp}(R) = \omega R$ to the thermal velocity $u_{th} = (2kT/m_{He})^{1/2}$ (ω =0,3,5)

• as functions of $\tau_{0l}(\lambda 3889) = n(2^3S)\kappa_{0l}(\lambda 3889)R$ (optical radius)

 \rightarrow for large u_{exp}/u_{th} and τ_0 , calculated intensity ratios are quite similar to those for smaller u_{exp}/u_{th} and τ_0

4.7 The Bowen Resonance-Fluorescence Mechanisms for OIII and OI

- wavelength coincide between Hell L α line at $\lambda 303.78$ and Olll $2p^2 {}^3P_2 3d {}^3P_2^o$ line at $\lambda 303.80$
- \cdot some residual H^+ in the H^{++} zone of a nebula
 - $\rightarrow \text{HeII}\ \text{L}\ \alpha$ photons emitted by recombination are scattered many times
 - \rightarrow high density of Hell L α photons
 - \rightarrow since O^{++} is also present, some of the HeII L α photons are absorbed by O^{++} and excite $3d {}^{3}P_{2}^{o}$ level of OIII
 - \rightarrow quickly decays by a radiative transition
 - \cdot by resonance scattering in the $2p^2~^3P_2-3d~^3P_2^o$ line by emitting photon (most frequent)
 - \cdot by emission of $\lambda 303.62~2p^2~^3P_1-3d~^3P_2^o$
 - may then escape or be reabsorbed by another O^{++} ion, again populating $3d {}^{3}P_{2}^{o}$
 - \cdot by emitting one of six longer wavelength photons $3p~^{3}L_{J} 3d~^{3}P_{2}^{o}$
- level $3p {}^{3}L_{J}$ then decay to 3s and ultimately back to $2p^{2} {}^{3}P$ or decay to $2p^{3}$ and then back to $2p^{2} {}^{3}P$ \Rightarrow Bowen resonance-fluorescence mechanism
 - conversion of HeII L α to lines that arise from $3d {}^{3}P_{2}^{o}$ or from the levels excited by its decay
- · for interpretation, require the solution of the problem of scattering, escape, and destruction of Hell L α with o^{++} scattering and resonance fluorescence

Bowen Resonance-Fluorescence Mechanisms for Ol

- wavelength coincide between HI L β at $\lambda 1025.72$ Å and OI $2p^4 \ ^3P_2 2p^3 3d \ ^3D_3^o$ line at $\lambda 1025.76$ Å
- \cdot some atomic oxygen exists in the ${\it H^{++}}$ zone
 - \cdot similar to the situation for OIII and HeII L α
- \cdot excitation of $2p^33d$ $^3D_3^o$
 - \rightarrow this level decays by producing
 - $2p^{3}3p^{3}P_{2} 2p^{3}3d^{3}D_{3}^{o}\lambda 11286.9\text{\AA}$
 - 2p³3s ³S₁^o 2p³3p ³P₂ λ 8446.36Å
 - three lines of the multiplet $2p^{4} {}^{3}P_{2,1,0} 2p^{3}3s {}^{3}S_{1}^{o} \lambda \lambda 1302.17, 1304.86, 1306.03$ Å

 \cdot in simple case, each excitation produces a cascade through the first two of these lines, followed by one of the last three

 \rightarrow relative intensities of the first two lines = the sum of the intensities of the multiplet

 \cdot in photon unit

 \rightarrow predicted relative intensities in energy units are inversely proportional to their wavelength

4.8 Collisional Excitation in Hel

<i>T</i> (K)	$2^{3}S, 2^{3}P^{o}$	$2^{3}S, 3^{3}S$	$2^{3}S, 3^{3}P^{o}$	$2^{3}S, 3^{3}D$	$2^{3}S, 3^{1}D$
6.000	16.3	2.40	1.61	1.46	0.249
10,000	25.8	2.29	1.61	1.95	0.259
15,000	37.1	2.25	1.59	2.52	0.257
20,000	46.5	2.26	1.57	2.99	0.252
25,000	55.3	2.31	1.56	3.43	0.245

collisional excitation of H is negligible compared with recombination

 \leftrightarrow in He⁰, 2³S level is highly metastable and collisional excitation from it can be important

- \cdot consider a nebula sufficiently ${\rm dense}(n_e \gg n_c)$
 - \cdot main mechanism for depopulating 2^3S is collisional transitions to 2^1S and 2^1P^o
 - equilibrium population in 2³S: $n_e n(\text{He}^+)\alpha_B(\text{He}^0, n^3L) = n_e n(2^{3}S) \left[q_{2^{3}S, 2^{1}S} + q_{2^{3}S, 2^{1}P^o}\right]$.

$$\rightarrow \text{rate of collisional population of } 2^{3}P^{o}: \quad n_{e}n(2^{3}S)q_{2^{3}S,2^{3}P^{o}} = \frac{n_{e}n(\text{He}^{+})q_{2^{3}S,2^{3}P^{o}}}{\left[q_{2^{3}S,2^{1}S} + q_{2^{3}S,2^{1}P^{o}}\right]} \alpha_{\text{B}}(\text{He}^{0}, n^{3}L)$$

 \rightarrow relative importance of collisional to recombination excitation of $\lambda 10830$:

$$\frac{n_e n (2^3 S) q_{2^3 S, 2^3 P^o}}{n_e n (\text{He}^+) \alpha_{\lambda 10830}^{eff}} = \frac{q_{2^3 S, 2^3 P^o}}{\left[q_{2^3 S, 2^1 S} + q_{2^3 S, 2^1 P^o}\right]} \frac{\alpha_{\text{B}}(\text{He}^0, n^3 L)}{\alpha_{\lambda 10830}^{eff}}$$

 \cdot compute $q_{2^3S,2^3P^o}$ from the collision strengths Υ

 \cdot at T=10, 000K, ratio of collisional to recombination excitation ~8

- ightarrow collisional excitation from 2^3S completely dominates the emission of $\lambda 10830$
 - \cdot the factor by which it dominates depends weakly on T, and can easily decrease with $n_e < n_c$

Importance of Collisional excitation in Hel for $2^1 S$ and $2^1 P^{o}$

- \cdot collisional transition rates from 2^3S to 2^1S and 2^1P^o are smaller than to 2^3P^o
- \cdot recombination rates of population of 2^1S and 2^1P^o are also smaller

 \Rightarrow collisions are important in the population of $2^{1}S$ and $2^{1}P^{o}$

- \cdot cross section for collisions to the higher singlets and triplets are not negligible
 - collisional population of $3^3 P^o$ is significant and somewhat affects the strength of $\lambda 3889$

 \cdot atomic data indicates that there is a non-negligible collisionally excited component in the observed strength of $\lambda 5876$ in planetary nebula

• similar collisional-excitation effects occur from the metastable $He^0 2^1S$ and $H^0 2^2S$ levels \Leftrightarrow decay more rapidly than $He^0 2^3S$

⇒population are much smaller and resulting excitation rates are negligible