AGNAGN Seminar Sec2-2.3

Misato Fujii

Photoionization Equilibrium Introduction

 \cdot emission nebulae: photoionization of a diffuse gas cloud by UV photons from a hot "exciting" star or from a cluster of exciting stars

 \cdot ionization equilibrium in the nebula: the balance between photoionizations and recombinations of electrons with the ion

• hydrogen: most abundant element

⇒first approximation to the structure of nebula: pure H cloud surrounding by a single hot star

• ionization equilibrium:

$$n(\mathrm{H}^{0}) \int_{\nu_{0}}^{\infty} \frac{4\pi J_{\nu}}{h\nu} a_{\nu}(\mathrm{H}^{0}) d\nu = n(\mathrm{H}^{0}) \int_{\nu_{0}}^{\infty} \phi_{\nu} a_{\nu}(\mathrm{H}^{0}) d\nu = n(\mathrm{H}^{0})\Gamma(\mathrm{H}^{0}) = n_{e} n_{p} \alpha(\mathrm{H}^{0}, T)$$

 $\cdot J_{\nu}$: mean intensity of radiation at the point (per unit area, unit time, unit solid angle, unit frequency interval)

• $\phi_{\nu} = \frac{4\pi J_{\nu}}{h\nu}$: number of incident photons (per unit area, unit time, unit frequency interval time)

 $[cm^{-3} s^{-1}]$

- $a_{\nu}(\mathrm{H}^{0})$: ionization cross section for H by photons with energy $h\nu$
- $\Gamma(H^0) = \int_{\nu_0}^{\infty} \phi_{\nu} a_{\nu}(H^0) d\nu$: number of photoionizations (per H atom, unit time)
- $\cdot n(H^0)$, n_e , n_p : neutral atom, electron, proton densities (per unit volume)
- $\alpha(H^0, T)$: recombination coefficient
- \rightarrow right-hand side: number of recombinations (per unit volume, unit time)

 \cdot to a first approximation, J_{ν} is the radiation emitted by the star reduced by the inverse-square effect of geometrical dilution

•
$$4\pi J_{\nu} = \frac{R^2}{r^2} \pi F_{\nu}(0) = \frac{L_{\nu}}{4\pi r^2} [\text{erg cm}^{-2} \text{ s}^{-1} \text{ Hz}^{-1}]$$

- R: radius of the star
- $\pi F_{\nu}(0)$: flux of the surface of the star
- r: distance from the star to the point
- L_{ν} : luminosity of the star per unit frequency interval

 \cdot at a typical point in a nebula, H is almost completely ionized because the UV field is so intense

- example: point in HII region
 - density 10H atoms and ions $/\text{cm}^3$ $(n(\text{H}) = 10 \text{ cm}^{-3})$
 - 5pc from a central O7.5 star ($T_* = 39,700K$)

• Q(H⁰) =
$$\int_{\nu_0}^{\infty} \frac{L_{\nu}}{h\nu} d\nu \approx 1 \times 10^{49} \text{ [photons s}^{-1]}$$

•
$$a_{\nu}(\mathrm{H}^{0}) \approx 6 \times 10^{-18} \,[\mathrm{cm}^{2}]$$

$$\rightarrow \int_{\nu_0}^{\infty} \frac{4\pi J_{\nu}}{h\nu} a_{\nu}(\mathbf{H}^0) \, d\nu \approx 1 \times 10^{-8} = \tau_{ph}^{-1} \, [\mathrm{s}^{-1}]$$

• τ_{ph} : lifetime of the atom before photoionization

•
$$\alpha(H^0, T) \approx 4 \times 10^{-13} \,[\text{cm}^3 \text{s}^{-1}]$$

• ξ : fraction of neutral H

 $\rightarrow n_e = n_p = (1 - \xi)n(H), n(H^0) = \xi n(H)$ $\rightarrow \xi \approx 4 \times 10^{-4}$: nearly completely ionized

finite source of UV photons can't ionize an infinite volume

 \Rightarrow if the star is in a sufficiently large gas cloud, there must be an outer edge to the ionized material

• thickness of transition zone between ionized and neutral gas is approximately one mean free path of an ionizing photon $(l \approx [n(H^0)a_{\nu}]^{-1} \text{ cm})$

due to absorption

• same parameter before and $\xi \approx 0.5$

 \Rightarrow thickness of transition zone: $d \approx \frac{1}{[n(H^0)a_{\nu}]} \approx 0.1 \text{pc}$ or much smaller than the radius of the ionized nebula

⇒nearly completely ionized "Strömgren sphere" or HII region

separated by a thin transition region from outer neutral gas cloud or HI region

In this chapter

• examine the photoionization cross section and recombination coefficient for H \rightarrow calculate the structure of hypothetical pure H regions

• consider the photoionization cross section and recombination coefficient for He (second most abundant element)

→calculate more realistic models of HII regions

• extend analysis to less abundant heavy elements

• do not strongly affect the ionization structure of the nebula, but are very important in thermal balance

- $\boldsymbol{\cdot}$ energy-level diagram of H
 - n: principal quantum number
 - L: angular momentum quantum number

• S, P, D, F, $\cdots \rightarrow L=0, 1, 2, 3, \cdots$

- permitted transitions to levels n<4 (solid line)
 - for one-electron system, selection rule: $\Delta L = \pm 1$
- mean lifetimes of the excited level:

•
$$\tau_{nL} = \frac{1}{\sum_{n' < n} \sum_{L' = L \pm 1} A_{nL,n'L'}} (10^{-4} - 10^{-8} \text{ s})$$

• A(nL, n'L'): transition probabilities $(10^4 - 10^8 \text{ s}^{-1})$

Figure 2.1

Partial energy-level diagram of H I, limited to $n \le 7$ and $L \le G$. Permitted radiative transitions to levels n < 4 are indicated by solid lines.

2.2 Photoionization and Recombination c

• exception: 2^2S level

- $\boldsymbol{\cdot}$ not allowed one-photon downward transition
- : $2^2S \rightarrow 1^2S$ occur with emission of two photons
 - $A(2^2S, 1^2S) = 8.23 \text{ s}^{-1}, \tau_{2^2S} = 0.12 \text{ s}$

Figure 2.1 Partial energy-level diagram of H I, limited to $n \le 7$ and $L \le G$. Permitted radiative transitions to levels n < 4 are indicated by solid lines.

 \rightarrow quite shorter than the mean lifetime of H atom before photoionization

• $\tau_{ph} \approx 10^8 \text{ s} (1^2 S \text{ level})$, same order of magnitude for excited level

 \Rightarrow we can consider that nearly all the H⁰ is in 1²S level

 \cdot photoionization from 1^2S is balanced by recombination to all levels

 \cdot recombination to excited level is quickly followed by radiative transitions downward to ground level

⇒simplify calculations of physical conditions in gaseous nebulae

• photoionization cross section for the 1^2S level of H^0 (or hydrogenic ion with nuclear charge Z):

•
$$a_{\nu}(Z) = \frac{A_0}{Z^2} \left(\frac{\nu_1}{\nu}\right)^4 \frac{\exp\{4 - [(4\tan^{-1}\varepsilon)/\varepsilon]\}}{1 - \exp(-2\pi/\varepsilon)} [\text{cm}^2] \ (\nu \ge \nu_1)$$

• $A_0 = \frac{2^9 \pi}{3e^4} \left(\frac{1}{137.0}\right) \pi a_0^2 = 6.30 \times 10^{-18} [\text{cm}^2]$
• $\varepsilon = \sqrt{\frac{\nu}{\nu_1} - 1}$
• $h\nu_1 = Z^2 h\nu_0 = 13.6Z^2 \text{ eV} \text{ (threshold energy)}$
→Figure 2.2

 $\cdot \; a_{\nu}(Z)$ drops off rapidly with energy as ν^{-3} not too far above the threshold

• threshold for H: $\nu_0 = 3.29 \times 10^{15} \text{ s}^{-1}$ or $\lambda_0 = 912 \text{\AA}$

⇒higher energy photons penetrate further into neutral gas before absorbed

- electrons produced by photoionization have an initial distribution of energies that depends on $J_{\nu}a_{\nu}/h\nu$ \Leftrightarrow cross section for elastic scattering collisions between electrons is quite large $(4\pi (e^2/mu^2)^2 \approx 10^{-13} \text{ cm}^2)$ \rightarrow collisions tend to set up a Maxwell-Boltzmann energy distribution
 - other cross sections involved in the nebulae (including recombination cross section) are much smaller \Rightarrow to a good approximation, the electron-distribution function is Maxwellian \Rightarrow all collisional process occur at rates fixed by local temperature defined by this Maxwellian \Rightarrow recombination coefficient to a specified level n^2L : $\alpha_{n^2L}(H^0, T) = \int_0^\infty u\sigma_{n^2L}(H^0, u)f(u) du [cm^3 s^{-1}]$
 - $f(u) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT}\right)^{3/2} u^2 \exp(-mu^2/kT)$: Maxwell-Boltzmann distribution function for electrons
 - $\cdot \sigma_{n^2L}$: recombination cross section to n^2L in H^0 for electrons with velocity u
 - \cdot cross sections vary approximately as u^{-2}

 \Rightarrow recombination coefficient vary approximately as $T^{-1/2}$

• numerical values of α_{n^2L} : Table 2.1

 \cdot mean electron velocities are of order $5\times 10^7 cm\,s^{-1}$

 \Rightarrow recombination cross section are of order 10^{-20} or $10^{-21} cm^2$

- $\boldsymbol{\cdot}$ much smaller than geometrical cross section of H atom
- \cdot in nebular approximation discussed previously, recombination quickly leads through downward radiative transitions to 1^2S

 \rightarrow total recombination coefficient is the sum all levels

$$\rightarrow \alpha_A = \sum_{n,L} \alpha_{n^2 L} (\mathrm{H}^0, T) \ [\mathrm{cm}^3 \ \mathrm{s}^{-1}]$$

 $= \sum_{n} \sum_{L=0}^{n-1} \alpha_{nL}(\mathbf{H}^{0}, T) = \sum_{n} \alpha_{n}(\mathbf{H}^{0}, T)$

 $\cdot \ \alpha_n$: recombination coefficient to all the levels with principal quantum number n

typical recombination time:

· $\tau_r = 1/n_e \alpha_A \approx 3 \times 10^{12}/n_e~{\rm s} \approx 10^5/n_e~{\rm yr}$

 deviations from ionization equilibrium are decrease in time of this order

	5,000 K	10,000 K	20,000 K
α_{12S}	2.28×10^{-13}	1.58×10^{-13}	1.08×10^{-13}
α_{22S}	3.37×10^{-14}	2.34×14^{-14}	1.60×10^{-14}
Q2 2 po	8.33×10^{-14}	5.35×10^{-14}	3.24×10^{-14}
α_{32S}	1.13×10^{-14}	7.81×10^{-15}	5.29×10^{-15}
Q3200	3.17×10^{-14}	2.04×10^{-14}	1.23×10^{-14}
α_{32D}	3.43×10^{-14}	1.73×10^{-14}	9.49×10^{-15}
$\alpha_{4} \simeq s$	5.23×10^{-15}	3.59×10^{-15}	2.40×10^{-15}
Q4 2 P0	1.51×10^{-14}	9.66×10^{-15}	5.81×14^{-15}
$\alpha_{4} 2_{D}$	1.90×10^{-14}	1.08×10^{-14}	5.68×10^{-15}
$\alpha_{4} \circ E_{F^0}$	1.09×10^{-14}	5.54×10^{-15}	2.56×10^{-15}
α_{10} 2S	4.33×10^{-16}	2.84×10^{-16}	1.80×10^{-16}
$\alpha_{10} {}^{2}G$	2.02×10^{-15}	9.28×10^{-16}	3.91×10^{-16}
$\alpha_{10} 2_M$	2.7×10^{-17}	1.0×10^{-17}	4.0×10^{-18}
α_A	6.82×10^{-13}	4.18×10^{-13}	2.51×10^{-13}
α_B	4.54×10^{-13}	2.59×10^{-13}	1.43×10^{-13}

....

• consider simple problem of a single star that is a source of ionizing photons in a homogeneous static cloud of H

- only radiation ($\nu \ge \nu_0$) is effective in the photoionization of H from the ground level
- ionization equilibrium: $n(H^0) \int_{\nu_0}^{\infty} \frac{4\pi J_{\nu}}{h\nu} a_{\nu} d\nu = n_p n_e \alpha_A(H^0, T) [cm^{-3} s^{-1}] (2.8)$
- equation of transfer for radiation $(\nu \ge \nu_0)$: $\frac{dI_{\nu}}{ds} = -n(\mathbf{H}^0)a_{\nu}I_{\nu} + j_{\nu}$
 - I_{ν} : specific intensity of radiation
 - j_{ν} : local emission coefficient

- $\boldsymbol{\cdot}$ divide the radiation field into two parts
 - \cdot "stellar" part: result directly from the input radiation from the star
 - "diffuse" part: result from the emission of the ionized gas

 $\rightarrow I_{\nu} = I_{\nu s} + I_{\nu d}$

- stellar radiation decreases outward because of geometrical dilution and absorption
 - only source is the star

→stellar radiation:
$$4\pi J_{\nu s} = \pi F_{\nu s}(r) = \pi F_{\nu s}(R) \frac{R^2 \exp(-\tau_{\nu})}{r^2} [\text{erg cm}^{-2} \text{ s}^{-1} \text{ Hz}^{-1}] (2.11)$$

- $\pi F_{\nu s}(r)$: flux of stellar radiation at r
- $\pi F_{\nu s}(R)$: flux at R (radius of the star)

•
$$\tau_{\nu}(r) = \int_{0}^{r} n(\mathrm{H}^{0}, r') a_{\nu} dr'$$
: radial optical depth at r
• $\tau_{\nu}(r) = \frac{a_{\nu}}{a_{\nu_{0}}} \tau_{0}(r)$ (2.12) (τ_{0} : optical depth at the threshold)

• equation of transfer for the diffuse radiation $I_{\nu d}$: $\frac{dI_{\nu d}}{ds} = -n(H^0)a_{\nu}I_{\nu d} + j_{\nu}$

• for $kT \ll h\nu_0$, the only source of ionizing radiation is recaptures of electrons from the continuum to the ground level

 \rightarrow emission coefficient:

$$j_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \left(\frac{h^{2}}{2\pi m kT}\right)^{3/2} a_{\nu} \exp[-h(\nu - \nu_{0})kT] n_{p} n_{e} \text{ [erg cm}^{-2} \text{ s}^{-1} \text{ Hz}^{-1} \text{ sr}^{-1}] (\nu > \nu_{0})$$

• strongly peaked to $\nu = \nu_{0}$ (threshold)

total number of photons generated by recombinations to the ground level:

$$4\pi \int_{\nu_0}^{\infty} \frac{J_{\nu}}{h\nu} d\nu = n_p n_e \alpha_1(\mathrm{H}^0, T) \,[\mathrm{cm}^{-3} \,\mathrm{s}^{-1}] \,\,(2.15)$$

 $\cdot \alpha_1 = \alpha_{1s} < \alpha_A$

 \rightarrow diffuse field $j_{\nu d}$ is smaller than $j_{\nu s}$ on the average

• for optically thin nebula, $j_{\nu d} \approx 0$ as a good approximation

for optically thick nebula, good first approximation is that no ionizing photons can escape
 ⇒diffuse radiation field photon generated in nebula is absorbed elsewhere in the nebula

 $\rightarrow 4\pi \int \frac{j_{\nu}}{h\nu} dV = 4\pi \int n(\mathrm{H}^0) \frac{a_{\nu} J_{\nu d}}{h\nu} dV$ (integration is over the entire volume of the nebula)

• "on the spot" approximation amounts to assuming that a similar relation holds locally

$$\rightarrow J_{\nu d} = \frac{j_{\nu}}{n(\mathrm{H}^{0})a_{\nu}}$$

• exact if all photons were absorbed very close to the point where they are generated ("on the spot")

- diffuse radiation field photons have $\nu\approx\nu_0$

 \Rightarrow they have large α_{ν} and correspondingly small mean free paths before absorption \Rightarrow not a bad approximation

• on-the-spot approximation, (2.11), (2.15), (2.8)

$$\rightarrow \text{ionization Equation:} \quad \frac{n(\mathrm{H}^0)R^2}{r^2} \int_{\nu_0}^{\infty} \frac{\pi F_{\nu}(R)}{h\nu} a_{\nu} \exp(-\tau_{\nu}) \, d\nu = n_p n_e \alpha_B(\mathrm{H}^0, T) \quad (2.18)$$
$$\cdot \alpha_B(\mathrm{H}^0, T) = \alpha_A(\mathrm{H}^0, T) - \alpha_1(\mathrm{H}^0, T) = \sum_2^{\infty} \alpha_n(\mathrm{H}^0, T)$$

 \Rightarrow in optically thick nebulae, the ionizations caused by stellar radiation-field photons are balanced by recombinations to excited levels of H

• recombinations to the ground level generate ionizing photons that are absorbed elsewhere in the nebula, but have no effect on the overall ionization balance

• for stellar input spectrum $\pi F_{\nu}(R)$, left-hand side of (2.18) can be tabulated as a function of τ_0

· a_{ν}, τ_{ν} are known function of ν

 \rightarrow for assumed density distribution, $n_{\rm H}(r) = n({\rm H^0},r) + n_p(r)$, temperature distribution T(r), (2.18), (2.12) can be integrated outward

 \rightarrow find $n(\mathrm{H}^{0},r), n_{p}(r) = n_{e}(r)$

• two models for homogeneous nebulae with $n(H) = 10H \text{ cm}^{-3}$ (atom+ion) & T = 7,500K

- $\cdot \pi F_{\nu}(R)$ is a blackbody spectrum
 - represent approximately 07.5 main-sequence star
- $\cdot \pi F_{\nu}(R)$ is a computed model stellar atmosphere
- \rightarrow expected nearly complete ionization out to critical radius r_1
 - at r_1 , the ionization drops off abruptly to nearly zero \Rightarrow central ionized zone: "HII region" ("H⁺ region")
 - surrounded by outer neutral H⁰ region ("HI region")

Ionization structure of two homogeneous pure-H model H II regions.

• r_1 can be found from (2.18), (2.12) $(\frac{d\tau_v}{dr} = n(H^0)a_v)$

$$\rightarrow R^2 \int_{\nu_0}^{\infty} \frac{\pi F_{\nu}(R)}{h\nu} d\nu \int_0^{\infty} d\left[-\exp(-\tau_{\nu})\right] = \int_0^{\infty} n_p n_e \alpha_B r^2 dr = R^2 \int_{\nu_0}^{\infty} \frac{\pi F_{\nu}(R)}{h\nu} d\nu$$

• within r_1 , ionization is nearly complete $(n_p = n_e \approx n({\rm H}))$

 \cdot outside r_1 , ionization is nearly zero $(n_p=n_epprox 0)$

$$\rightarrow 4\pi R^2 \int_{\nu_0}^{\infty} \frac{\pi F_{\nu}}{h\nu} d\nu = \int_{\nu_0}^{\infty} \frac{L_{\nu}}{h\nu} d\nu = Q(H^0) = \frac{4\pi}{3} r_1^3 n_H^2 \alpha_B$$

• $L_{\nu} = 4\pi R^2 \pi F_{\nu}$: luminosity of the star at frequency ν (per time, unit frequency interval)

 \Rightarrow total number of ionizing photons emitted by the star balances the total number of recombinations to excited levels within the ionized volume $4\pi r_1^3$ (Strömgren sphere)

• numerical values of radii (Table2.3)→Chapter5

Spectral type	T_{*} (K)	M_V	log Q(H ⁰) (photons/s)	$\frac{\log n_e n_p r_1^3}{n \text{ in cm}^{-3}};$ r_1 in pc	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$r_1 (pc)$ $n_e = n_p$ $= 1 cm^{-3}$
03 V	51,200	-5.78	49.87	49.18	6.26	122
04 V	48,700	-5.55	49.70	48.99	6.09	107
04.5 V	47,400	-5.44	49.61	48.90	6.00	100
05 V	46,100	-5.33	49.53	48.81	5.92	94
05.5 V	44,800	-5.22	49.43	48.72	5.82	87
06 V	43,600	-5.11	49.34	48.61	5.73	81
06.5 V	42,300	-4.99	49.23	48.49	5.62	75
07 V	41,000	-4.88	49.12	48.34	5.51	69
07.5 V	39,700	-4.77	49.00	48.16	5.39	63
08 V	38,400	-4.66	48.87	47.92	5.26	57
08.5 V	37,200	-4.55	48.72	47.63	5.11	51
09 V	35,900	-4.43	48.56	47.25	4.95	45
09.5 V	34,600	-4.32	48.38	46.77	4.77	39
B0 V	33,300	-4.21	48.16	46.23	4.55	33
B0.5 V	32,000	-4.10	47.90	45.69	4.29	27
O3 III	50,960	-6.09	49.99	49.30	6.38	134
B0.5 III	30,200	-5.31	48.27	45.86	4.66	36
O3 Ia	50,700	-6.4	50.11	49.41	6.50	147
09.5 Ia	31,200	-6.5	49.17	47.17	5.56	71

Note: T = 7,500 K assumed for calculating α_B .