The MOSDEF Survey: A Stellar Mass–SFR– Metallicity Relation Exists at z ~ 2.3

Sanders+2018, APJ, 858, 99

Arxiv: 1711.00224

Presenter: N.Chen

Structure:

- Introduction [2]
- Observations, Data, and Measurements [4]
- Results [5]
- Discussion [4]

Introduction

- The buildup of the gaseous and stellar content of galaxies is still not fully understood
- The connection between ISM abundance and baryon cycling \rightarrow [MZR] The stellar masses (M_*) and oxygen abundances [12+log(O/H) or Z] of SFGs (Local)
- A secondary dependence of the z \sim 0 MZR on star formation rate (SFR)

At fixed M_* , higher SFRs have lower metallicities $\rightarrow M_*$ -SFR-Z relation

• Mannucci+2010: the M_* -SFR-Z relation is redshift invariant at z < 2.5

 \rightarrow Fundamental metallicity relation (FMR)

Questions: 1. Redshift invariant? 2. high-Z galaxies show a M_* -SFR-Z relation?

• No concensus has been reached (z > 1):

Redshift invariant, An evolving M_* –SFR–Z relation

• Sanders+2015: $z \sim 2.3$ galaxies have lower metallicities than local at fixed M_* and SFR

- Difficulty in determine whether the MZR has a secondary SFR dependence at z > 1
 Several works have failed to detect any significant SFR dependence
 requires either high-precision measurements or large sample sizes to detect
- Previous: a single metallicity indicator (most often [NII] λ 6584/H α or R23

based on large samples (> 100) with low S/N individual measurements, or small samples with moderate S/N measurements

• MOSDEF: multiple metallicity-sensitive emission-line ratios

"metallicity" to refer to the gas-phase oxygen abundance (12+log(O/H))

Observations, Data, and Measurements

- 1. The MOSDEF Survey
 - ~ 1500 galaxies at 1.4 < z < 3.8
- 2. Measurements and Derived Quantities
 - 2.1 Stellar mass FAST (exclude strong lines)
 - Chabrier03, Calzetti+00 curve, solar metallicity, constant SFH
 - 2.2 Emission-line fluxes and Redshift
 ^{0.5}
 Gaussian fitting (mostly single)
 [NII]+Hα: triple
 Redshift: the highest S/N line (Hα or [OIII]λ5007)
 - 2.3 Reddening Correction and Star Formation Rate SFRs were estimated using dust-corrected Hα luminosities Dust corrections were applied by Cardelli+89 Milky Way extinction curve N2O2, O32, R23: corrected; O3N2,N2,O3: uncorrected Uncertainties: dust curve, measurement uncertainties, silt loss (16%)

[OII]: double

- 3. Sample selection
 - 3.1 MOSDEF z \sim 2.3 Sample

Criterion: 2.0 < z <2.7; $\log(M_*/M_{\odot})$ > 9.0; H α , H β : S/N > 3;

 \rightarrow 260 galaxies at z_{med} = 2.29, $\log(M_*/M_{\odot})$ = 9.0 - 11.4, SFR = 1.4 - 260 M_{\odot} yr⁻¹

Mass Completeness of MOSDEF:

 $\log(M_*/M_{\odot}) = 9.5$

 3.2 SDSS z ~ 0 Comparison Sample
 MPA-JHU: M_{*}, SFR, sSFR, emission-line ratios The z ~ 0 comparison sample has the same set of emission lines measured as the z ~ 2.3 sample and SFR measurements.

4. Metallicities

- N2, O3N2 indicators, Pettini and Pagel (2004) $12 + \log(O/H) = 8.90 + 0.57 \times \log(N2)$, n = 143, Uncertainties: 0.14 dex, -2.5 < log(N2) < -0.3 $12 + \log(O/H) = 8.73 - 0.32 \times \log(O3N2)$. n = 126, Uncertainties: 0.18 dex, $\log(O3N2) < 2.0$
- N2O2 indicator, Sanders + 17

 $12 + \log(O/H) = 8.94 + 0.73 \times \log(N2O2)$. n=118, Uncertainties: 0.2 dex, -1.3 < log(N2O2) < 0.0

• O32 indicator, Jones + 15

 $12 + \log(O/H) = 8.3439 - 0.4640 \times \log(O32)$. n=169, Uncertainties: 0.11 dex, -1.0 < log(N2) < 1.0

Each of the detected line-ratio subsets has median stellar mass in the range 9.9 < $\log(M_*/M_{\odot})$ < 10.1 and median SFR within the range 22 < SFR/ M_{\odot} yr⁻¹ < 32

- 5. Correcting for Diffuse Ionized Gas Contamination (f-factor)
 - Sanders + 17: DIG a significant contaminant of global galaxy spectra at z \sim 0 Local: f = 0.55 z \sim 2.3: negligible

- 6. Stacking Methodology
 - For galaxies covers all emission lines mentioned ([OII], Hβ, [OIII], Hα, [NII]),
 9.0 < log(M_{*}/M_☉) < 10.5 (upper limit mass cut: avoid red star-forming, quiescent)
 → 195 galaxies
 - 2 binning method: **a.** stellar mass **b.** sSFR + stellar mass
 - **Composite spectra:** shift into rest frame, flux density \rightarrow luminosity density (z_{spec}), dust correction was done separately based on Balmer decrement, separately normalized by H α luminosity, take the median value

-			
1.3	h	e	

$N_{\rm gal}{}^{\rm a}$	$\log\left(\frac{M_*}{M_{\odot}}\right)^{\rm b}$	SFR _{med} ^c	$\log\left(\frac{sSFR}{yr^{-1}}\right)^{d}$	log(N2)	log(O3)	log(O3N2)	log(N2O2)	log(O32)	log(R23)
				M_* stacks	\$				
49 49 49 48	9.0-9.62; $9.43^{+0.01}_{-0.03}$ 9.62-9.89; $9.78^{+0.02}_{-0.01}$ 9.89-10.13; $9.97^{+0.01}_{-0.04}$ 10.14-10.50; $10.30^{+0.01}_{-0.02}$	$12.1^{+3.4}_{-1.2}$ $10.6^{+0.8}_{-4.4}$ $16.6^{+2.8}_{-6.8}$ $45.1^{+14.9}_{-12.2}$	$-8.34^{+0.16}_{-0.05}$ $-8.75^{+0.03}_{-0.15}$ $-8.75^{+0.11}_{-0.13}$ $-8.65^{+0.17}_{-0.13}$	$-1.22^{+0.10}_{-0.05}$ $-1.08^{+0.06}_{-0.09}$ $-0.90^{+0.05}_{-0.06}$ $-0.71^{+0.03}_{-0.02}$	$\begin{array}{c} 0.66\substack{+0.04\\-0.02}\\ 0.55\substack{+0.05\\-0.02}\\ 0.45\substack{+0.02\\-0.04}\\ 0.37\substack{+0.02\\-0.05}\end{array}$	$1.89^{+0.06}_{-0.10}$ $1.63^{+0.11}_{-0.07}$ $1.36^{+0.06}_{-0.06}$ $1.09^{+0.03}_{-0.06}$	$-1.13^{+0.20}_{-0.08}$ $-1.12^{+0.09}_{-0.18}$ $-0.93^{+0.13}_{-0.14}$ $-0.80^{+0.21}_{-0.15}$	$\begin{array}{c} 0.28\substack{+0.10\\-0.13}\\ 0.07\substack{+0.16\\-0.11}\\ -0.05\substack{+0.07\\-0.17}\\ -0.20\substack{+0.23\\-0.19}\end{array}$	$\begin{array}{c} 0.93\substack{+0.04\\-0.03}\\ 0.89\substack{+0.06\\-0.05}\\ 0.84\substack{+0.05\\-0.05}\\ 0.83\substack{+0.07\\-0.05}\end{array}$
	-0.02	-9.5	$M_*-\Delta$ sSFF	R stacks: $\Delta log(ss)$	$SFR/yr^{-1}) < -$	-0.2	0.00 -0.15	-0.19	0.10
30 30	9.18–9.90; $9.72^{+0.04}_{-0.01}$ 9.90–10.49; $10.04^{+0.02}_{-0.05}$	$5.7^{+0.2}_{-1.5}$ $11.1^{+1.9}_{-0.6}$	$-8.96\substack{+0.01\\-0.12}\\-8.99\substack{+0.10\\-0.01}$	$-1.05\substack{+0.10\\-0.11}\\-0.79\substack{+0.09\\-0.06}$	$\begin{array}{c} 0.43\substack{+0.04\\-0.04}\\ 0.34\substack{+0.04\\-0.05}\end{array}$	$1.49\substack{+0.13\\-0.14}\\1.14\substack{+0.06\\-0.10}$	$-1.04\substack{+0.13\\-0.16}\\-0.75\substack{+0.13\\-0.09}$	$\begin{array}{c} 0.00\substack{+0.08\\-0.11}\\-0.11\substack{+0.04\\-0.12}\end{array}$	$\begin{array}{c} 0.80\substack{+0.05\\-0.04}\\ 0.76\substack{+0.05\\-0.04}\end{array}$
			M_* - Δ sSFR stat	cks: $-0.2 \leq \Delta \log$	og(sSFR/yr ⁻¹)	$0 \leqslant +0.2$			
34 33	$9.00-9.86; 9.50^{+0.01}_{-0.03}$ $9.86-10.47; 10.1^{+0.05}_{-0.01}$	$9.2^{+0.4}_{-2.1} \\ 26.2^{+4.4}_{-0.1}$	$-8.53\substack{+0.03\\-0.07}\\-8.68\substack{+0.07\\-0.03}$	$-1.16\substack{+0.04\\-0.17}\\-0.81\substack{+0.07\\-0.04}$	$\begin{array}{c} 0.59\substack{+0.03\\-0.04}\\ 0.41\substack{+0.04\\-0.04}\end{array}$	$1.76\substack{+0.14\\-0.07}\\1.23\substack{+0.05\\-0.08}$	$^{-1.09\substack{+0.10\\-0.19}}_{-0.83\substack{+0.11\\-0.08}}$	$\begin{array}{c} 0.21\substack{+0.09\\-0.13}\\-0.11\substack{+0.04\\-0.09}\end{array}$	$\begin{array}{c} 0.88\substack{+0.03\\-0.05}\\ 0.84\substack{+0.05\\-0.02}\end{array}$
			M_* - Δ sSFI	R stacks: $\Delta \log(s)$	$SFR/yr^{-1}) > +$	-0.2			
34 34	9.20-9.92; $9.55^{+0.01}_{-0.05}$ 9.92-10.5; $10.25^{+0.01}_{-0.03}$	$\begin{array}{r} 32.1\substack{+3.0\\-4.1}\\ 88.2\substack{+17.3\\-1.0}\end{array}$	$-8.04\substack{+0.07\\-0.04}\\-8.30\substack{+0.12\\-0.02}$	$-1.23\substack{+0.07\\-0.10}\\-0.78\substack{+0.05\\-0.05}$	$\begin{array}{c} 0.69\substack{+0.03\\-0.01}\\ 0.46\substack{+0.03\\-0.03}\end{array}$	$1.93\substack{+0.11\\-0.08}\\1.24\substack{+0.08\\-0.05}$	$-1.22^{+0.11}_{-0.11}$ $-0.97^{+0.07}_{-0.07}$	$\begin{array}{r} 0.25\substack{+0.15\\-0.06}\\-0.18\substack{+0.09\\-0.06}\end{array}$	$\begin{array}{c} 0.97\substack{+0.03\\-0.04}\\ 0.92\substack{+0.03\\-0.04}\end{array}$

Galaxy Properties and Emission-line Ratios from Stacks of $z \sim 2.3$ Star-forming Galaxy Spectra

Results

1. Mean z \sim 2.3 Relations

- In the lowest-mass bin, there is a selection bias (High SFR sample) because of Hβ detection limit. [Do not affect the conclusion]
- O3N2 and O32 are sensitive to the ionization parameter, containing both a high and low ionization energy ionic species.
 N2 is also sensitive to changes in ionization parameter, as well as the nitrogen abundance (N/H).
- A clear progression toward higher ionization parameter and lower N/O and N/H at fixed stellar mass from z ~ 0 to z ~ 2.3.

• Ionization parameter anticorrelated to metallicity, while N/O, N/H are correlated to metallicity

 \rightarrow lower metallicity at fixed M_* for galaxies at z ~ 2.3

• Quantification:

All four panels are matched to the same range in metallicity $(7.7 < 12 + \log(O/H) < 8.9)$ lower metallicities at fixed M_* by 0.37, 0.25, 0.46, and 0.25 dex on average for metallicities

• Potential problem:

locally calibrated relations to estimate nebular metallicities in high-redshift galaxies (Discussion part)

- 2. Is There SFR Dependence of the z \sim 2.3 MZR?
 - Whether the metallicities of high-z galaxies display a secondary dependence on SFR at fixed M_* (Prerequisite of FMR)
 - Residuals around the mean M_{*} relations for the line ratios, as a function of residuals around the mean M_{*} –sSFR relation (z ~ 2.3, 4 mass bin: 9.43, 9.78, 9.97, 10.30)
 - The presence of a M_{*} –SFR–Z relation:
 O3N2 decreases with increasing metallicity, while N2 and N2O2 increase
 - This is the first time that such a relation has been clearly demonstrated to exist at this redshift.
 - The high-mass M_* – Δ sSFR stacks most clearly follow the same relation as the medians (the low-mass M_* – Δ sSFR are noisier)
 - For SDSS data: show similar trends log(M_{*}/M_☉) < 10.0 (decrease of disappearance of the SFR dependence at high stellar mass [larger than this work's range], Mannucci+2010)

Line Ratio	Slope	$r_{\rm s}^{\rm a}$	p-value ^b
O3N2	-0.14 ± 0.034	0.48	1.5×10^{-8}
N2	-0.11 ± 0.037	-0.32	8.6×10^{-5}
N2O2	-0.27 ± 0.067	-0.54	3.2×10^{-10}

- O32 trend is not obvious in this study, while SDSS shows clear correlation. (Discussion part)
- O3 ratio is sensitive to ionization parameter and metallicity a decrease in metallicity (increase in O3) as sSFR increases at fixed M_{*}

• R23 ratio is sensitive to O/H but has significant ionization parameter dependence R23 is not a strong function of M_* for the $z \sim 2.3$ sample (turnover regime) R23 does increase slightly with decreasing M_* \rightarrow our sample mostly lies on the upper metal-rich R23 branch where R23 increases with decreasing O/H \rightarrow positive correlation between $\Delta \log(R23)$ versus $\Delta \log(sSFR)$ -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 $g([0]]] \lambda\lambda4959.5007 + [0]] \lambda373$

log(O3)

 $\log(R23)$

30	$9.18 - 9.90; 9.72 ^{+0.04}_{-0.01}$	5.7+0.2
30	$9.90 - 10.49$; $10.04^{+0.02}_{-0.05}$	$11.1^{+1.9}_{-0.6}$
34	9.00-9.86.9.50+0.01	9.2+0.4
33	$9.86 - 10.47; 10.1 \substack{+0.05\\-0.01}$	26.2 ⁺⁴ -
34	$9.20-9.92; 9.55^{+0.01}_{-0.05}$	$32.1_{-4}^{+3.0}$
34	9.92 - 10.5; $10.25 + 0.01$	88.2+17

3. Do z \sim 2.3 Galaxies Lie on the z \sim 0 FMR?

- Test whether or a FMR exists that extends out to $z\sim2.3$
- The highest-SFR/mass z ~ 2.3 stack, does not have any local analogue in the SDSS sample. However, all other z ~ 2.3 stacks have analogous z ~ 0 counterparts matched in *M*_{*} and SFR.

z ~ 2.3 galaxies display metallicities that are lower than their z ~ 0 counterparts by ~0.1 dex at fixed M_* and SFR

→ There is not a FMR that can simultaneously match the properties of star-forming galaxies from $z \sim 0$ out to $z \sim 2.3$ (argue against redshift invariance)

The z ~ 2.3 stacks display higher O3 and R23 than z ~ 0 stacks at fixed M* and SFR, suggesting higher excitation and lower metallicity at fixed M* and SFR at z ~ 2.3 (O32, discussion part)

Discussion

1. Potential Evolution in Metallicity Calibrations and Ionized Gas Physical Conditions

- Physical conditions of ionized gas in star-forming regions evolve with redshift No consensus: the ionization parameter, N/O ratio, the shape of the ionizing spectrum Consensus: electron density (increase with redshift, but no influence on this study)
- MOSDEF: high-redshift galaxies have elevated N/O at fixed O/H compared to z ~ 0 galaxies Explanations: high occurrence rate of Wolf–Rayet stars, pristine gas inflows
- Steidel+16: A harder ionizing spectrum at fixed nebular abundance in high-redshift starforming regions
- Kewley+13,15,16: An elevated ionization parameter in high-redshift galaxies (Larger sSFR)
- 1.1 Nitrogen-to-Oxygen Ratio
- N/O ratio in this study: increasing sSFR at fixed M_* , higher O3N2, lower N2, and lower N2O2
- lower N/O at fixed O/H (Without metallicity variation) ?
 - ↔ Wolf–Rayet stars scenario (Masters+14)
 - \leftrightarrow high-redshift galaxies have higher N2 at fixed O3 compared to the z \sim 0 population

1.2 Ionization Parameter and Hardness of the Ionizing Spectrum

• Younger populations \rightarrow lower Fe/O (time-delayed of Fe production) \rightarrow harder spectrum

 \rightarrow higher ionization parameter \rightarrow higher O3 and O3N2 at fixed O/H

For N2, a harder ionizing spectrum increasing N2

- This may explain the trend on the ΔO3N2-ΔsSFR and ΔO3-ΔsSFR without the introduction of M_{*}-SFR-Z relation, but cannot explain that of ΔN2-ΔsSFR (harder ionizing spectrum cannot reproduce the observed result)
 For N2, a higher ionization parameter decreases N2
- Fits the observation trends

But N2O2 may not be significantly affected by changes in the ionization parameter, since it is a ratio of two low-ionization lines with similar ionization energies.

• Ionization parameter is not the only influencing factor

The observed trends in O3N2, N2, N2O2, and O3 are primarily driven by metallicity variations, and that the z \sim 2.3 M_* –SFR–Z relation and evolution in O/H at fixed M_* and SFR are real.

- 2. Implications of the Evolution of the M_* –SFR–Z Relation
 - The existence of a M_* –SFR–Z relation at z ~ 2.3 supports the theoretical prediction from analytical chemical evolution models and cosmological hydrodynamical simulations.

Cosmological hydrodynamical simulation (Dave + 17, long-dashed line)

- $\Delta \log(O/H)$ v.s $\Delta \log(sSFR)$, slope: -0.16 and independent of redshift
- Observation results located within 2σ of Dave+17, consistent
- Compare with z \sim 0 samples, requiring a recalibration of line ratio metallicity relations at high redshift

The \sim 0.1 dex offset (lower metallicity at high redshift)

- Gas reservoir theory: exceeding inflow (only feasible at z > 4, unlikely)
 - → The evolving M_* –SFR–Z relation is related to gas properties.

gas consumption timescale, the mass-loading factor (η =outflow rate/SFR)

lower metallicity \rightarrow longer timescale \rightarrow lower star formation efficiency \times

ightarrow larger mass-loading factor \bigcirc

Pristine gas accretion from the IGM is more important at high redshift than recycled gas accretion

- 3. The Inconsistency of Results Based on O32
 - Dust correction curve should not be the case. (N2O2, R23)

A. Dependence of the shape of the attenuation curve on SFR

- Dust-correction recipe leads to either underestimated E(B-V)_{gas} for z ~ 2.3 galaxies below the SFR-M_{*} relation, overestimated E(B-V)_{gas} for objects above the SFR-M_{*} relation, or both.
 - \rightarrow At low $\Delta \log(sSFR)$, overestimate of O32; At high $\Delta \log(sSFR)$, underestimate of O32

B. O32 line's physics

• O32 directly probes the ionization parameter and is only sensitive to metallicity because of the anticorrelation between ionization parameter and metallicity.

Ionization parameter does not depend on metallicity at $z \sim 2.3$ so strongly as local

A is most likely

