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5.1 Introduction

Estimate physical quantities from observations

Temperature T

The strengths of H recombination lines themselves vary extremely
weakly with T .
But the ratio of a line to recombination continuum varies more rapidly.
So, we can utilize the ratio for estimating the temperature T .

Electron density ne

We can estimate n by using the ratios of pair of lines with close energy
but with different transition probabilities.

abundance

Once we estimate T, ne, then we can obtain the total number of ions.
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5.2 Temperature measurements from emission lines

A few ions have energy-level structures that result in emission lines from
two different upper levels.

The relative rates of excitation to upper levels depend very strongly
on T , so the relative strength of the lines emitted by these levels may be
used to measure electron temperature.

We can calculate exact populations of the various levels , according to
Section 3.5.

However, it is simpler and more instructive to proceed by direct physical
reasoning.

Hereafter, we consider [OIII] lines , which are the best example.
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5.2 Energy levels of [OIII]
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5.2 Properties of [OIII]

1D level decays into 3P2 or 3P1 which result in emission of a photon
λ5007, λ4959 respectively.

In the limit ne → 0, line ratio is calculated by the relative transition
probabilities. (λ5007 : λ4959 ≒ 3 : 1)
1S level decays into 1D or 3P1 which result in emission of a photon
λ4363, λ2321 respectively.

Cascade decay 1S →1 D →3 P is possible, but its contribution is
relatively small. So, we neglect this here.
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5.2 Emission line ratio

The ratio of emission-line strengths in the limit ne → 0 (collisional
deexcitation is negligible)is given simply by

emission line ratio

jλ4959 + jλ5007
jλ4363

=
Υ(3P,1 D)

Υ(3P,1 S)

[
A(1S,1 D) +A(1S,3 P )

A(1S,1 D)

]
ν̄(3P,1 D)

ν(1D,1 S)
exp(∆E/kT )

(1)

where, hν̄ is transition-probability-averaged energy

ν̄(3P,1 D) =
A(1D2,

3 P2)ν(λ5007) +A(1D2,
3 P1)ν(λ4959)

A(1D2,3 P2) +A(1D2,3 P1)
(2)

and ∆E is the energy difference between the 1D2 and 1S0.
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5.2 Rough explanation of the emission line ratio

The emission line strength is proportional to the collision strenghs Υ(refer
to my slides of Chapter3).

Υ(3P,1 S)× [A(1S,1 D)/(A(1S,1 D) +A(1S,3 P )] means the collision
strength from 1S to 1D (Υ(1S,1 D)).

The energy of a single photon by the transition is hν, which corresponds
to the energy gap of the levels.

Boltzmann factor exp(∆E/kT ) corresponds to the population ratio.
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5.2 1st Order Correction by collisional deexcitation

The emission line ratio (1) is a good approximation up to ne ∼ 105cm−3.

However, at higher densities collisional deexcitation begins to play a
role.

First order correction in ne, exp(−∆E/kT ): the RHS of eq(1) is
divided by a factor

f =

1 +
C(1D,3 P )C(1D,3 P )

C(1S,3 P )A(1D,3 P )
+

C(1D,3 P )

A(1D,3 P )

1 +
C(1S,3 P ) + C(1S,1 D)

A(1S,3 P ) +A(1S,1 D)

(3)

where

C(i, j) = q(i, j)ne = 8.629× 10−6 ne

T 1/2

Υ(i, j)

ωi
(4)

(In brief, C is deexcitation rate. Refer to my slides of Chapter3)
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5.2 Numerical values of the line ratios

By substituting numerical values of the collisional strengths and transition
probabilities, we then get

jλ4959 + jλ5007
jλ4363

=
7.9 exp

(
3.29× 104/T

)
1 + 4.5× 10−4ne/T 1/2

(5)

In the same way, we can calculate line ratios of [NII], [NeIII], [SIII]

[NII]
jλ6548 + jλ6583

jλ5755
=

8.23 exp
(
2.5× 104/T

)
1 + 4.4× 10−3ne/T 1/2

(6)

[NeIII]
jλ3869 + jλ3968

jλ3343
=

13.7 exp
(
4.3× 104/T

)
1 + 3.8× 10−5ne/T 1/2

(7)

[SIII]
jλ9532 + jλ9069

jλ6312
=

5.44 exp
(
2.28× 104/T

)
1 + 3.5× 10−4ne/T 1/2

(8)
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5.2 Examples of line ratio in low density limit

ne = 1cm−3
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5.2 Temperature T determination

Since the nebulae are optically thin (τ ≪ 1) ,

Iλ4959 + Iλ5007
Iλ4363

≃
∫
(jλ4959 + jλ5007)ds∫

jλ4363ds
(9)

where, s is the distance along the ray.
If the temperature T and the electron density ne are uniform, then the ratio of
the intensities becomes simple.

Iλ4959 + Iλ5007
Iλ4363

=
(jλ4959 + jλ5007)s

jλ4363 × s
=

jλ4959 + jλ5007
jλ4363×

(10)

Therefore, in this case, we can estimate T by observing the intensity ratio and
by using Fig 5.1.
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5.2 Details

In the case of smaller nebulae, no information need be known on the
distance of the nebula, the amount of O++ because they cancel out.

If collisional deexcitation isnot negligible, even a rough estimate of ne

provides a good value of T .

The effect of the dust correction is not too large because the line
wavelengths are relatively close .

The [OIII] line ratio is quite large and is therefore rather difficult to
measure accurately.

In recent years, light pollution of Hg Iλ4358 have been increasing, so it
becomes harder to measure [OIII]λ4363.
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5.2 Observation of HII region

All temperatures of these H II regions are in the range 7, 000− 14, 000K.
Large part of the dispersion is due to physical differences between H II regions.
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5.2 Observation of Planetary nebulae
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5.2 Characteristics of Planetary Nebulae

Planetary nebulae have higher surface brightness than H II region, so
there is a good deal observations.

The typical temperature of planetary nebulae is somewhat higher than
that of HII region. This is because

higher temperature of the central star and it leads to a higher energy input
higher electron density leads to collisional deexcitations and it then
suppress the cooling by emission lines.
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5.2 Another way to estimate the temperature T

Another method

(collisionally excited line)

(recombination line of the next lower state of ionization)
(11)

This is because both strengths are proportional to n(C++)ne and therefore
cancel out of their ratio. So, the ratio is the function of T and does not
depend on n(C++)ne.
example: collisionally excited line CIII λ1909, recombination line CII λ4267.
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5.3 Temperature Determinations from Optical
Continuum Measurements

We can’t use H lines as indicators of the temperature T .

All the recombination cross sections σnL are proportional to 1/u2(same
velocity dependence)

So, relative numbers of captured electrons are nearly independent of T .

Then, the cascade matrices depend only on transition probabilities A.

However, T can be determined by measuring the relative strength of the
recombination continuum with respect to a recombination line.
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5.3 Temperature Determinations from Optical
Continuum Measurement

Rough explanation of why temperature can be determined by measuring the
relative strength of the recombination continuum.

The emission in the continuum depends on velocity-distribution
function(Maxwell-Boltzman distribution).
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5.3 Two choices of continuum

Substitute numerical values from Table 4.4 to 4.12,

In figure 5.5, we consider Hβ as the recombination line and two choices of
continuum.

λ 4885 (near Hβ)

Balmer discontinuity λ3646±.
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5.3 Ratio Hβ/νFν(λ4885)

Continuum νFν(λ4885) consists of HI recombination and 22S → 12S
two-photon decay.

HI recombination: Slowly increase with T .

two-photon decay : Slowly decrease with T .

Therefore, the total continuum νFν(λ4885) is nearly independent of T .
Thus, the dependency of the ratio Hβ/νFν(λ4885) is the same as Hβ.
It is known that intensity of Hβ recombination line is proportional to T−0.84.
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5.3 Ratio of Balmer discontinuity and Hβ

It is known that the strength of the Balmer continuum at the series limit
decreases approximately as T−3/2. So, its ratio to Hβ is

νFν(3646−)− νFν(3646+)

Hβ
∝ T−1.5

T−0.84
= T−0.66 (12)

Thus, the ratio slowly decreases with T .

In the above way, we can determine the temperature by using the ratios
of some emission lines and continuum. But,

It’s difficult to observe continuum and Balmer discontinuity because it is
also produced by the radiation from the star or by dust scattering.

It’s very difficult to separate Balmer discontinuity by recombination in
nebula from that by stellar radiation or dust scattering.
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