
AGNAGN seminar

26 Sep 2025 Taiki Kikuchi

12.6 Other Supernova Remnants

- Other remnants in the Milky Way
 - Some remnants were found in radio surveys.
 - non-thermal, power-law spectra (synchrotron emission)
 - The radio emission is often strongly concentrated near the edge of the object. (Cf. Cygnus Loop)
 - They are typically not observed in optical.
 - because of strong interstellar extinction
 - They show highly filamentary structures

12.6 Other Supernova Remnants

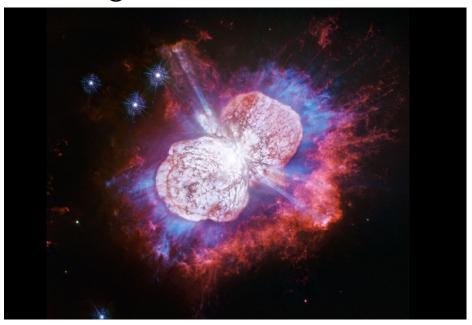
- Other remnants in other galaxies
 - Identified by radio and optical observations
 - Strong X-ray emission is another way to identify them
 - It arises in the very hot gas left behind the shock
- Example: L/S MC
 - Direct images were taken through narrow-band filters ([SII],[Fe X])
 - Size, mean expansion velocity → lifetime → occurrence rate
 - Estimated supernova occurrence rate: 0.6 / century

12.7 Shock-Heated and Photoionized Regions

- In shock-heated and photoionized clouds, strongest emission lines are basically the same
- strongest lines : HI, He I, [OIII] (optical) HI, [CIII], C IV, Mg II (UV)
- But a careful analysis can usually identify the basic energy source

12.7 How to distinguish Shock-Heated and Photoionized Regions

- Utilize [OIII] line ratio
 - In shock ionization
 - gas is collisionally ionized $\rightarrow kT \simeq \Delta E$
 - $O^{++}: T \simeq 0.5 1.0 \times 10^5 \text{ K}$
 - In photoionization
 - $0^{++}: T \simeq 10^4 \text{ K}$
 - Precise measurement of [OIII] enables us to distinguish between the two cases
 - most of the remnants are too faint for λ 4363 to be measured.


12.7 How to distinguish Shock-Heated and Photoionized Regions

- Utilize low-ionization lines ([OI], [SII], ···)
 - The front strikes → instantaneously heated, ionized
 - → cools by radiation (with Recombination lags)
 - As a result, a long, partly ionized, still heated region is created
 - In this region,
 - Recombination : $O^+ \rightarrow O^0$, $S^{++} \rightarrow S^+$ results in affluent O^0 , S^+
 - Also, there are appreciable amounts of e^{-} (from H^{+})
 - Thus, strong collisionally excited [OI], [SII] lines are emitted.
 - On the other hand, photoionization region has few O^0 , S^+

12.7 How to distinguish Shock-Heated and Photoionized Regions

- Utilize lines from refractory elements (Ca, Al, Fe)
 - Shocks destroy grains
 - ullet the refractory elements are returned to the gas phase
 - In photoionized regions, grains survive for substantial times
 - Therefore, the gas-phase abundances of these elements can be diagnostic

- class of luminous blue variables
- some of them have $M \geq 100 M_{\odot}$, $L \geq 10^6 L_{\odot}$, $\tau \leq 3 \times 10^6 {
 m yr}$
- current luminosity : $L \simeq 5 \times 10^6 L_{\odot}$
- Temperature : $T \simeq 30,000$ K
- stellar radius : ≈ 0.4 AU
- mass loss rate : $5\times10^{-4}~M_{\odot}yr^{-1}$

- luminous blue variables
 - only marginally stable (L/M) is close to the Eddington limit)
 - leave the main sequence and evolve into giants
 - then undergo mass loss
 - finally, become Wolf-Rayet stars and supernovae

12.8 η Car

- The combined radiation of the 36 known O stars ionizes and heats the surrounding Carina nebula
- Dust extinction reddening: R ~ 4 (larger than average)
 - due to larger grain size
- The presence of M supergiants with age $\sim 10^7$ yr
 - η Car itself is much younger
- visual apparent mag : 2 ~ 4 (variable)
- The most recent major outburst
 - occurred between 1837 and 1856
 - the star reached $m_V = 0 \sim -1$

- The "Homunculus Nebula"
 - The two lobe(shell)-like ejecta around the η Car star
 - Expansion velocity: 650 km/s
 - Two lobes have diameters of roughly 0.1 pc
 - Formation process of this the bipolar flow is not well understood
 - rapid stellar rotation
 - a binary companion

- Dust
 - Dust must have formed within the Homunculus Nebula
 - Dust temperature ~ radiative energy temperature
 - $T = (U/a)^{1/4}$, a : radiation constant
 - Dust sublimation temperature ~ 1000K
 - which corresponds to 0.003 pc

- Other ejecta
 - Emission-line regions are also found outside the Homunculus Nebula
 - H II region-like spectra
 - components:
 - *He/H* ~ 4(*He/H*)_⊙
 - C/H, $O/H \sim 0.1 (C/H$, O/H) $_{\odot}$
 - $N/0 \sim 40(N/0)_{\odot}$
 - strongly affected by CNO nuclear processing → late stages of its evolution