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A spherifcfal blackbody at temperature T is surrounded by a spherical shell of
gas, thermally emitting at temperature Ts (< T¢). This shell absorbs in a
narrow spectral line at vg; that is, the absorption coefficient oy, becomes large at
the frequencey 1y and negligibly small at other frequencies(Fig. 1.).

This object is observed along the rays A and B shown in Fig. 2.

(a) Write schematic spectra centered at frequency vy observed along rays A and
B.

(b) Answer the preceeding question when Ts > T
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Ray B

Ray A

Absorption coefficient of the mate- 0 2: A schematic of a blackbody emitter

rial in the shell surrounded by an absorbing shell, viewed
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along rays A and B.
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2-4 Radiative Diffusion
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2. 000000000000 O00DO0DO0ODLO0ODODOODOODDbOOODbO0ODO
000000 (Faraday Rotation)0 00000 AfO

2med 4

0000000000000w> w,w>wp=al0000
000000000000000?7

3. The signal from a pulsed, polarized source is measured to have an arrival time
delay that varies with frequency as % = 1.1 x 107° s2, and a Faraday rotation
that varies with frequency as % = 1.9 x 10~ 5. The measurements are made
around the frequency w = 10% s7!, and the source is at unknown distance from
the earth. Find the mean magnetic field, (B)), in the interstellar space between

the earth and the source :
[ nBds

B = s
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A particle of mass m and charge e moves at constant, nonrelativistic speed v in a

circle of radius a.

1. What is the power emitted per unit solid angle in a direction at angle 8 to the
axis of the circle?

2. Describe qualitatively and quantitatively the polarization of the radiation as a
function of the angle 6.

3. What is the spectrum of the emitted radiation?

4. Suppose a particle is moving nonrelativistically in a constant magnetic field B.

Show that the frequency of circular motion is wp = %BC, and that total emitted

power is

and is emitted solely at the frequency wg. Here, rg = nf%z is the classical electron
radius. This is a non-relativistic form of synchrotron radiation, and called

cyclotron or gyro radiation.
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5-2 U0bLOOOUOOoOoobboboooon

sider a sphere of ionized hydrogen plasma that is undergoing spherical

gravitational collapse.The sphere is held at constant isothermal temperature Tp,

uniform density and constant mass M, during th collapse, and has decreasing radius

R(t). The sphere cools by emission of bremsstrahlung radiation in its interior. At

t = T the sphere is optically thin.

1.

What is the total luminosity of the sphere as a function of My, R(t) and T while
the sphere is optically thin?

What is the luminosity of the sphere as a function of time after it becomes
optically thick?

Give an implicit relation, in terms of R(t), for the time ¢; when the sphere
becomes optically thick.

. Draw a qualitative curve of the luminosity as a function of time.
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00 5-3 Hot Gas D00 XOOODOODO

Suppose X-ray emission is received from a source of known distance L with a flux F'
(erg/cm?/s). The X-ray spectrum has the form of Fig 3. It is conjectured that this
X-ray emission is due to bremsstrahlung from an optically thin, hot, plasma cloud,
which is in hydrostatic equilibrium around a central mass M. Assume that the cloud
thickness AR is roughly its radius R, AR ~ R. Find R and the density of the cloud p,
in terms of the known observations and conjectured mass M. If F = 1078 (erg/cm?/s)
and L = 10 (kpc), what are the constraints on M such that the source would indeed be

effectively thin (for self-consistency)? Does electron scattering play any role?

log Fv

L ' L '2 » log hv (keV)

0 3: Observed spectrum from an X-ray source.
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6-2 Poynting Robertson Effect

Consider a particle of dust orbiting a star in a circular orbit, with velocity v. This

particle absorbs stellar photons, heats up, and then emits the excess energy

isotropically in its rest frame.

1.

Show that in absorbing a photon the angular momentum of the particle about
the star does not change. (Assume the photons are travelling radially outward
from the star.)

. When the particle emits its radiation, show that the velocity and its direction do

not change, but that the angular momentum now decreases by the ratio m/m’ of
the rest mass after and before emission. Denoting the angular momenta before
and after by [y and [, show that

2h7u)_1/2

mc?

l:lo(1+

Having obtained this general result, let us now assume v < ¢ and hv < mc?. By
expanding, show that to lowest order the change in angular momentum caused

by one photon is
Y
mc
Historical Note: This result, although now for nonrelativistic particles, apparently
cannot be derived classically. Attempts to do so by Poynting and others let to results
differing from the correct answer by various numerical factors. Robertson resolved the
problem in 1937 (MNRAS, 97, 423), showing that it is a relativistic effect even to lowest

order. The above phenomenon is called the Poynting-Robertson effect.

. A dust grain having a mass m ~ 107!(g) and cross section o ~ 10~8(cm?) orbits

the Sun at 1 A.U. Assuming that it always keeps a circular orbit, find the time
for it to fall into the Sun.
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A spectrum shown in Fig 4 is observed from a point source of unknown distance
d. A model for this source is a spherical mass of radius R that is emitting
synchrotron radiation in a magnetic field of strength B. The space between us
and the source is uniformly filled with a thermal bath of hydrogen that emits and
absorbs mainly by bound-free transitions, and it is believed that the hydrogen
bath is unimportant compared to the synchrotron source at frequencies where the
former is optically thin. The synchrotron source function can be written as

S, = A(erg/cm?/s/Hz) (5)) o <V>5/2 .

Yo

The absorption coefficient for synchrotron radiation is

B\ ®+2)/2 ,,, \ —(p+4)/2
S _ -1 - -
ay = Clem™) (Bo) <V0> ’

and that for bound-free transition is

alf = p(en™) (2)7

W

where A, By, vy, C and D are constants and p is the power law index for the

assumed power law distribution of relativistic electrions in the synchrotron

source.

(a) Find the size of the source R and the
magnetic field strength B in terms
of the solid angle 2 = 7(R?/d?) sub-
tended by the source and the con-
stants A, By, C' and D.

log v

(b) Now using D and vy, in addition to
the previous constants, find the solid

angle of the source and its distance.

V1 V2 log v

O 4: Observed spectrum from a point

source.
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2. The thermal de Broglie wavelength of electrons at temperature 7" is defined by
A = —=—. The degree of degeneracy of the electrons can be measured by the

V2rmkt

number of electrons in a cube A on a side:

£=NX =41 x10716N, 7732,

For many cases of physical interest, the electrons are very nondegenerate, the
quantity v = log €' being of order of 10 to 30. We want to investigate the
consequences for the Boltzmann and Saha equations of v being large and only
weakly dependent on temperature. For the present purposes assume that the
partition functions are independent of temperature and of order unity.

(a) Show that the value of temperature at which the stage of ionization passes
from j to j + 1 is given approximately by

KT ~ X
Y
where x is the ionization potential between steges j and j + 1. Therefore,
this temperature is much smaller than the ionization potential expressed in
temperature units.
(b) The rapidity with which the ionization stage changes is measured by the

temperature range AT over which the ratio of populations N;/N;;1 changes
substantially. Show that

AT [dlog (N1 /N)T™H 4
T dlogT '

Therefore, AT is much smaller than T itself, and the change occurs rapidly.

(c¢) Using the Boltzmann equation and result (a) above, show that when 7 is
large, and atom or ion stays mostly in its ground state before being ionized.
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