

①ガンマ線バースト母銀河

Long-duration Gamma-ray Burst (GRB)

- 大質量星の終末の大爆発に起因
 星形成活動と密接に関連
- 近傍(z=0.0085)から遠方(z>7,8)まで検出可

遠方宇宙での星形成活動を探る新たなプローブ

GRBの発生環境、母銀河における 星形成活動の理解が必須

Long-duration GRBs: Probes of Star-forming Activity

LGRBs can be used as an *unbiased* tracer of star formation? e.g., Perley+13, Greiner+15

Need to understand the properties of LGRB hosts

分子ガス(星形成の材料)の観測

CO輝線強度 = 分子ガス質量の指標

これまで検出された例はなかった

ALMAによる観測

GRB母銀河における初のCO輝線検出 (Hatsukade+14) GRB020819B母銀河では分子ガスとダストの分布が大きく異なる

GRBの一般的な発生環境を探る

ALMA観測の結果 (Hatsukade+14)

GRB母銀河の分子ガス量を測定することに成功

➡ 分子ガスの観点から研究する<u>新たな手法を開拓</u>

分子ガスとダストの空間分布が大きく異なる
GRBは特殊な環境で発生か?

GRBが発生する一般的環境を探るには 他の母銀河での検証が必要

ALMA cycle 3

- 10 hosts were observed
- CO detection in 5 hosts (+ 1 tentative)
 - z = 1.0-2.1

ALMA cycle 3

- 10 hosts were observed
- CO detection in 5 hosts (+ 1 tentative)
 - z = 1.0-2.1

Star Formation Efficiency (SFE)

SFEs (L_{FIR}/L'_{CO}): comparable to normal SF galaxies at z ~ 1-2

Cycle 4: GRB 980425 Host

- GMC-scale molecular gas ($5x10^5$ Msun) with SN ≥ 5
- 0.59" resolution (100 pc)
- CO(1-0) at band 3
 - $1\sigma = 1.4 \text{ mJy}, \Delta v = 5 \text{ km/s}$
- CO(3-2) at band 7
 - $1\sigma = 3.3 \text{ mJy}, \Delta v = 5 \text{ km/s}$

Super-luminous Supernovae (SLSNe)

- Very bright explosions, ~10-100 times brighter than ordinary Type Ia and core-collapse SNe
 - Gal-Yam 12
- Detected at high redshifts, up to z = 3.9
 - Cooke+12

➔ powerful indicators of environments in the distant universe

- Classes
 - SLSN-I : hydrogen-poor in spectra
 - SLSN-II: hydrogen-rich in spectra
 - SLSN-R: a long light-curve tail powered by radioactive decay

Host Galaxies

- SLSN-I hosts
 - low-luminosity, low stellar mass, and low SFR galaxies compared to local starforming galaxies and the hosts of core-collapse SNe,
- SLSN-II hosts
 - show a larger range
 - e.g., Lunnan+14; Leloudas+15; Angus+16; Perley+16
- Comparison between SLSN-I and long-duration GRB hosts → controversial issue
 - SLSN-I hosts have lower stellar mass and SFR
 - Leloudas+15; Angus+16
 - similar in terms of SFR, stellar mass, and specific SFR
 - Lunnan+14; Japelj+16
- SLSN-I occur in galaxies with strong nebular emission lines
 - common properties with Extreme Emission Line Galaxies (EELGs)
 - e.g., Leloudas+15; Perley+16

Extreme Emission Line Galaxies (EELGs): low-mass, metal-poor, intensively starforming galaxies with strong nebular lines and a hard ionizing radiation field

VLA Proposal 2017A

- 3 GHz continuum observations of 8 hosts at z < 0.3
- To examine whether there is significant dust-obscured star formation or not
 - → allow us to derive true star forming activity
 - Studies of SLSN hosts have been made exclusively in UV/optical/NIR, which are sensitive to dust extinction
- 1. no significant obscured star formation
 - confirm the similarity between SLSN-I hosts and EELGs in M*-SSFR plane
 - → support the idea that SLSN-I result from very first star exploding in a starburst, earlier than GRBs
- 2. significant obscured star formation
 - the hosts are starbursts
 - preferred by the progenitor model of dynamical interactions and collision of stars in dense young star clusters

NIR images of the targets obtained by ground-based telescopes or HST (Angus+16; Perley+16). Circles and crosses represent SLSN positions. 10" x 10"

Fast Radio Burst (FRB)

- 継続時間が数ミリ秒の謎のフラッシュ現象
 - Parks, Arecibo, GBT
 - peak flux \sim 0.5-1 Jy at 1.4 GHz
 - dispersion measures (DMs) >~ 300 pc cm^-3
 - → extragalactic origin?
 - SN? GRB? magnetar?

Host Galaxy of FRB 121102

- VLA detection of the repeating FRB 121102
- Host galaxy at z = 0.19273
 - dwarf, low-mass, low-metallicity galaxy
 - → similar to long GRB hosts and SLSN hosts

M* (Msun)	(4-7) x 10^7
SFR(Hα) (Msun/yr)	0.4
12+log[O/H]	<8.4 (3o)

Tendulkar+17

② サブミリ波銀河

サブミリ波銀河:ミリ波・サブミリ波で明るい銀河

- ダストに厚く覆われた大規模星形成銀河
- FIR luminosity >10¹²⁻¹³ Lsun (ダスト熱放射)
- 星形成率 ~数100-1000 Msun/yr
- 赤方偏移 z~1-4, z > 4, 5 のものも

サブミリ波銀河の重要性

- ダストに隠された星形成銀河への寄与
- 遠赤外背景放射への寄与
- 近傍宇宙の大質量楕円銀河の祖先?

個数密度分布を調べることが重要な課題

AzTEC 1.1mm image

(Hatsukade+11)

ナンバーカウントの作成

ASTE望遠鏡搭載AzTECカメラによるサーベイ

- 波長1.1mm
- サーベイ面積:3平方度以上
- 1000個以上のサブミリ波銀河を検出 (850um-1.1mm帯で最多)

ナンバーカウント 1.1mmでの宇宙背景への寄与はおよそ<u>10%</u> より暗い (<1mJy) ソースが大きく寄与

ナンバーカウント:Faint End

ALMAを用い、最も暗い部分のナンバーカウントを作成

- ALMA cycle 0にて、20個の遠方星形成銀河を観測
- 偶然に15個の暗いソースを検出 (AzTEC観測より一桁暗い)

サブミリ波銀河ナンバーカウントの決定

ALMA

bright end への制限

- AzTECで検出した明るい333個のサブミリ波銀河を 高空間分解能観測 (1 arcsec)
- ALMA cycle 2, 3 (PI: Hatsukade)

複数のソースが寄与しているか検証

faint end への制限

- SXDS 105" x 50" (PI: K. Kohno)
- GOODS-S 4.8' x 4.8' (PI: K. Kohno)

ー般領域での広視野探査により バイアスのないサンプルを取得

ALMA Observations of bright AzTEC Sources in ADFS/SXDS/SSA22

- cycle 2 & 3 (PI: B. Hatsukade)
- 333 sources
- Band 6 (1.1mm)
- proposed rms: 180 uJy

	Area	rms	Ν	Ν
	(arcmin2)	(mJy/beam)	(total)	(>=2.4mJy)
ADF-S	909	0.38-0.80	233	100
SSA22	973	0.73-1.30	125	91
SXDS	954	0.52-0.92	280	142

Number Counts

SXDS-ALMA Survey

- ALMA observations of a contiguous 105" x 50" (or 2 arcmin²) window in the SXDF-UDS-CANDELS field
- PI: K. Kohno
- Band 6 (1.1 mm, 274 GHz)
- 19-point mosaic
- Total observing time: 3.6 hours
- Beam size: 0.53" x 0.41"
- Typical rms noise level: 55 uJy/beam
- Publications:
 - survey design, source catalog: Kohno+ in prep.
 - properties of Hα-selected galaxies: Tadaki+15
 - multi-wavelength analysis: Yamaguchi+ in prep., Wei-Hao+ in prep.

Kohno+15, IAU proc. Kohno+ in prep.

GOODS-S-ALMA Survey

- ALMA cycle 4 (PI: K. Kohno)
 - survey area: 23 arcmin² (4.8' x 4.8')
 - x10 times wider than SXDF-ALMA
 - proposed depth: 60 uJy (1σ)
 - c.f., 55 uJy in SXDF-ALMA
 - → Expected number of detections \approx 100-200 sources (≥4 σ)???

GOODS-S-ALMA Survey: preliminary

- data of tune1-north (1.6' x 1.6')
 - rms ~ 110 uJy/b (taper 0.5")
- expected number of sources (SN>5)
 - ~1-10

