

最近注目した研究 + Koay et al. 2015

泉拓磨

P.Du et al. 2015, ApJ, 806, 22

SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. IV. H β TIME LAGS AND IMPLICATIONS FOR SUPER-EDDINGTON ACCRETION

Pu Du¹, Chen Hu¹, Kai-Xing Lu^{1,2}, Ying-Ke Huang¹, Cheng Cheng³, Jie Qiu¹, Yan-Rong Li¹, Yang-Wei Zhang⁴, Xu-Liang Fan⁴, Jin-Ming Bai⁴, Wei-Hao Bian⁵, Ye-Fei Yuan⁶, Shai Kaspi⁷, Luis C. Ho^{8,9}, Hagai Netzer⁷, and Jian-Min Wang^{1,3,10}

(SEAMBH COLLABORATION)

 ¹ Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China ² Astronomy Department, Beijing Normal University, Beijing 100875, China
 ³ National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Road, Beijing 100020, China ⁴ Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China ⁵ Physics Department, Nanjing Normal University, Nanjing 210097, China ⁶ Department of Astronomy, University of Science and Technology of China, Hefei 230026, China ⁷ Wise Observatory, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel ⁸ Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China ⁹ Department of Astronomy, School of Physics, Peking University, Beijing 100871, China *Received 2015 January 26; accepted 2015 April 7; published 2015 June 4*

 Super-Edd.天体の候補をSDSS DR7から選び出し、測光&分光 フォローアップ(Linjiang telescope/Wise telescope)。Starndard disk - Slim diskの違いが何かの"量"に依存して見えるか、Slim disk 特有の現象はないか調べた。ここでは特にLag-Luminosity relation に注目。

 $R_{H\beta} \approx \alpha l_{44}^{\beta}$ ltd, 最新の数値はa = 33.65、 \beta = 0.533 (Bentz+13) <u>http://www.astro.gsu.edu/AGNmass/</u>

Objects	$ au_{\mathrm{H}eta}$	FWHM	$\sigma_{\rm line}$	$\log (M_{\bullet}/M_{\odot})$	log <i>M</i>	$\log L_{5100}$	$\log L_{{ m H}eta}$	$EW(H\beta)$
5	(days)	$(km s^{-1})$	$(km s^{-1})$			$(erg s^{-1})$	$(erg s^{-1})$	(Å)
				SEAMBH2012				
Mrk 335	$8.7^{+1.6}_{-1.9}$	2096 ± 170	1470 ± 50	$6.87\substack{+0.10 \\ -0.14}$	$1.28\substack{+0.37\\-0.30}$	43.69 ± 0.06	42.03 ± 0.06	110.5 ± 22.3
Mrk 1044	$10.5^{+3.3}_{-2.7}$	1178 ± 22	766 ± 8	$6.45\substack{+0.12\\-0.13}$	$1.22\substack{+0.40\\-0.41}$	43.10 ± 0.10	41.39 ± 0.09	101.4 ± 31.9
Mrk 382	$7.5^{+2.9}_{-2.0}$	1462 ± 296	840 ± 37	$6.50\substack{+0.19 \\ -0.29}$	$1.18\substack{+0.69\\-0.53}$	43.12 ± 0.08	41.01 ± 0.05	39.6 ± 9.0
Mrk 142	$7.9^{+1.2}_{-1.1}$	1588 ± 58	948 ± 12	$6.59\substack{+0.07 \\ -0.07}$	$1.65_{-0.23}^{+0.23}$	43.56 ± 0.06	41.60 ± 0.04	55.2 ± 9.5
MCG +06-26-012 ^a	$24.0^{+8.4}_{-4.8}$	1334 ± 80	785 ± 21	$6.92\substack{+0.14 \\ -0.12}$	$-0.34\substack{+0.37\\-0.45}$	42.67 ± 0.11	41.03 ± 0.06	114.6 ± 32.5
IRAS F12397 ^b	$9.7^{+5.5}_{-1.8}$	1802 ± 560	1150 ± 122	$6.79\substack{+0.27\\-0.45}$	$2.26\substack{+0.98\\-0.62}$	44.23 ± 0.05	42.26 ± 0.04	54.2 ± 8.4
Mrk 486	$23.7^{+7.5}_{-2.7}$	1942 ± 67	1296 ± 23	$7.24\substack{+0.12\\-0.06}$	$0.55\substack{+0.20 \\ -0.32}$	43.69 ± 0.05	42.12 ± 0.04	135.9 ± 20.3
Mrk 493	$11.6^{+1.2}_{-2.6}$	778 ± 12	513 ± 5	$6.14\substack{+0.04 \\ -0.11}$	$1.88\substack{+0.33\\-0.21}$	43.11 ± 0.08	41.35 ± 0.05	87.4 ± 18.1
<i>IRAS</i> 04416 ^c	$13.3^{+13.9}_{-1.4}$	1522 ± 44	1056 ± 29	$6.78\substack{+0.31 \\ -0.06}$	$2.63\substack{+0.16 \\ -0.67}$	44.47 ± 0.03	42.51 ± 0.02	55.8 ± 4.7
				SEAMBH2013				
SDSS J075101	$33.4^{+15.6}_{-5.6}$	1495 ± 67	1055 ± 32	$7.16\substack{+0.17 \\ -0.09}$	$1.34_{-0.41}^{+0.25}$	44.12 ± 0.05	42.25 ± 0.03	68.1 ± 8.6
SDSS J080101	$8.3^{+9.7}_{-2.7}$	1930 ± 18	1119 ± 3	$6.78\substack{+0.34 \\ -0.17}$	$2.33_{-0.72}^{+0.39}$	44.27 ± 0.03	42.58 ± 0.02	105.5 ± 8.3
SDSS J081441	$18.4^{+12.7}_{-8.4}$	1615 ± 22	1122 ± 11	$6.97\substack{+0.23 \\ -0.27}$	$1.56\substack{+0.63\\-0.57}$	44.01 ± 0.07	42.42 ± 0.03	132.0 ± 23.7
SDSS J081456	$24.3^{+7.7}_{-16.4}$	2409 ± 61	1438 ± 32	$7.44\substack{+0.12\\-0.49}$	$0.59\substack{+1.03\\-0.30}$	43.99 ± 0.04	42.15 ± 0.03	74.4 ± 7.6
SDSS J093922	$11.9^{+2.1}_{-6.3}$	1209 ± 16	835 ± 11	$6.53\substack{+0.07 \\ -0.33}$	$2.54\substack{+0.71 \\ -0.20}$	44.07 ± 0.04	42.09 ± 0.04	53.0 ± 6.7

Table 6H β Reverberations of the SEAMBH Targets

おそらく(泉の知る限り)最も美しいsuper-Edd.サンプル群
 → 今後の研究における母集団としての利用を薦める。

- (Mass) Eddington-ratioを定義
- Rev. mappingでM_{BH}を推定
 → standard cross correlation
- ηmin=0.038 (Bardeen+72)を採用して、dot(M) > 3でSEAMBHとみなす

JD - 2456600 (days)

Time lag (days)

・ ずれが生じる原因は、右図のよう [™] に明らかにdot(M)にある。すなわ ちDisk stateの遷移のせい。

- SEAMBHは系統的にR-L relation
 (標準円盤)からズレる。ある光
 度に対して、Rが小さい傾向。
- Cont.で見てもHβ光度で見ても同様の結果だが、わずかにHβの結果が、わずかにHβの結果の方が標準円盤との差異とscatterが小さい。もしかしたらSlim diskの構造を反映するのかも。

$$r_{_{\rm H\beta}} = rac{R_{_{\rm H\beta}}}{R_{\rm g}} = 1.9 \times 10^4 \, \dot{M}^{\,0.35} \, m_7^{-0.29},$$

$$Y=m_7^{0.29}r_{_{\mathrm{H}\beta}},$$

- そこで、diskの性質の違いを浮き
 彫りにするために、標準円盤でよく使われる重力半径での規格化を
 Hβ lagに適用。
- それを変形して、新たに<u>radius-</u>
 <u>mass parameter Y</u>を定義(disk
 の情報 = 降着率とBHの情報を組
 み込んだパラメータ)。
- Yはhigh-dot(M)に対してsaturation
 を示す!このときのdot(M)を観測
 的にきちんと制限することが、
 Slim disk modelの改善に重要。

 $L_{\text{Bol}} = \ell_0 \Big[1 + \ln \left(\dot{\mathscr{M}} / \dot{\mathscr{M}}_c \right) \Big] L_{\text{Edd}} \quad (\text{for } \dot{\mathscr{M}} \ge \dot{\mathscr{M}}_c),$

GLOBAL THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF BLACK HOLE ACCRETION DISKS: X-RAY FLARES IN THE PLUNGING REGION

MAMI MACHIDA

Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; machida@astro.s.chiba-u.ac.jp

AND

RYOJI MATSUMOTO Department of Physics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan Received 2002 April 8; accepted 2002 November 11

- AGN降着円盤のMHD simulation。
- かねてからの大問題であった、α-parameterの値が、たしかに観測 が示唆している~0.1であることを示した。

Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of $\sim 10^5$ yr

Kevin Schawinski,* Michael Koss,* Simon Berney and Lia F. Sartori*

Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland

Optically elusive AGNの数と、light travel timeの推定から、AGN の1-episodeの持続時間を調べた (Swift/BAT + SDSS)。

- 得られた結果は~1e5年と短い!
- Soltan's argumentで決まる時間は、 1e8-9年(e.g., Marconi+04, MNRAS, 351, 169)なので、AGNは>1000回 の"flickering"を経験しているようだ。
- Simulationも同様の結果を再現 (Novak+11; 左図)。
- AGN-hostのconnectionの大きな分散
 @high-zを説明できる(Hickox+14, ApJ, 782, 9)。

R.Davies et al. 2015, ApJ, 806, 127

INSIGHTS ON THE DUSTY TORUS AND NEUTRAL TORUS FROM OPTICAL AND X-RAY OBSCURATION IN A COMPLETE VOLUME LIMITED HARD X-RAY AGN SAMPLE

R. I. DAVIES¹, L. BURTSCHER¹, D. ROSARIO¹, T. STORCHI-BERGMANN², A. CONTURSI¹, R. GENZEL¹, J. GRACIÁ- CARPIO¹, E. HICKS³, A. JANSSEN¹, M. KOSS⁴, M.-Y. LIN¹, D. LUTZ¹, W. MACIEJEWSKI⁵, F. MÜLLER- SÁNCHEZ⁶, G. ORBAN DE XIVRY¹, C. RICCI^{7,8}, R. RIFFEL², R. A. RIFFEL⁹, M. SCHARTMANN¹⁰, A. SCHNORR- MÜLLER¹, A. STERNBERG¹¹, E. STURM¹, L. TACCONI¹, AND S. VEILLEUX¹²

• X線観測とIR観測の不一致の解消のため、neutral torusを導入

J. Koay et al. arXiv:1509.09203v1

ALMA Probes the Molecular Gas Reservoirs in the Changing-Look Seyfert Galaxy Mrk 590

J. Y. Koay,^{1*} M. Vestergaard,^{1,2} V. Casasola,^{3,4} D. Lawther¹ and B. M. Peterson^{5,6} ¹Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø, Denmark ²Steward Observatory, University of Arizona, Tucson, AZ 85721, USA ³INAF - Osservatorio Astrofisico di Arcetri, 50125, Firenze, Italy ⁴INAF - Istituto di Radioastronomia & Italian ALMA Regional Centre, 40129 Bologna, Italy ⁵Department of Astronomy, The Ohio State University, OH 43210, USA ⁶Center for Cosmology and Astroparticle Physics, The Ohio State University, OH 43210, USA

- 昨年あたり(?)からChanging look AGNがすごくhotなトピックに なっている(再発見とでも言うべきか)。
 → AGN typeの遷移を起こしたものを指す。
- ここではALMAでMrk590のCO(3-2)観測を行なった。結果、中心 100pc程度はガスがすかすか状態!とはいえ、著者たちはその残り カスでもまだ1E5年以上はAGNを光らせられるとしている。

その一方、>kpc scaleのガスの量は他のSeyfertと大差なし。ゆえに、このスケールのガス観測からAGN活動性に物申すことは無理。

Changing Look AGN

- AGNのtypeが遷移する(しかも人間 が観測できるタイムスケールで!),
 i.e., BLが出たり消えたり。
- 歴史は古く、1970年代からぽつぽつ
 報告があり、現在8天体(左図)
 +NGC4151)が知られている。
 - ・ Optically thick cloudが横切るせいだ という説が強い。

Mrk 590 (異端だと思う)

Property	Value	Ref.
R.A. (J2000)	$02^{\rm h} \ 14^{\rm m} \ 33.5^{\rm s}$	1
Dec (J2000)	$-00^{\circ} 46' 00''$	1
Morphology	SA(s)a	1
Galaxy inclination	25°	2
Galaxy major axis P.A.	-55°	3
Redshift	0.0264	1
Luminosity distance, $D_{\rm L}{}^a$	$115.4\mathrm{Mpc}$	
Linear scale ^{a}	$1'' = 531 \mathrm{pc}$	
$v_{\rm sys}$ (barycentric) ^b	$7910 {\rm km s^{-1}}$	4
HI velocity	$7910 {\rm km s^{-1}}$	4^d
HI FWZI c	$380\mathrm{kms^{-1}}$	4^d
Total HI mass	$30 \times 10^9 M_{\odot}$	4^d
$^{12}CO(1-0)$ velocity	$7945{\rm kms^{-1}}$	5^d
$^{12}CO(1-0)$ FWHM	$205\mathrm{kms^{-1}}$	5^d
$[O III] \lambda 5007$ velocity	$7950{\rm kms^{-1}}$	6^d
$[O III] \lambda 5007 FWHM$	$400\mathrm{kms^{-1}}$	6^d
Black Hole Mass	$4.75 \pm 0.74 \times 10^7 M_{\odot}$	7
$L_{\rm bol} \ (1990 {\rm s})^e$	$\sim 5.8 \times 10^{44} {\rm erg s^{-1}}$	7
$L_{\rm bol} \ (2013)^e$	$\sim 3.4\times 10^{42}\mathrm{ergs^{-1}}$	8

燃料になるガスが枯渇したのでは? と予測→ALMAで観測!

- その一方、Mrk 590の観測は、cloudtransition説よりも、intrinsicに降着率が 変化している説を支持。
- その場合、たとえば降着率に応じた Type-1 → Type-1.X → Type-2遷移が予 測されている。True Type-2の存在予言 (Elitzur et al. 2014, MNRAS, 438, 3340) → windy disk modelの帰結
- 他のCLAと比べて、Mrk 590はその光度 変化が異常に大きい。20年で1/100に なってしまった。。通常は数倍~10倍 程度の変動。

ALMA Observations of Mrk 590

→ 中心がガスでスカスカなのがわかる。HCO+(4-3)も全く受からず。

中心部でガスがない&星形成もない

Table 3. Emission Line Properties, Gas Masses and Star Forma-tion Rate Estimates in Mrk 590.

Property ^a	Units	$\begin{array}{c} \text{Central} \\ 180\text{pc}\times120\text{pc} \end{array}$	${f Central}\ 2{f kpc}$
$I_{\rm CO(3-2)} L'_{\rm CO(3-2)} M({\rm H}_2)^b$	$({\rm Jykms^{-1}}))$ $({\rm Kkms^{-1}pc^2}))$ (M_{\odot})	≤ 0.1 $\leq 3.6 \times 10^{5}$ $\leq 1.6 \times 10^{5}$ $[\leq 5.3 \times 10^{6}]$	3.33 4.4×10^{7} 1.0×10^{7} $[1.7 \times 10^{8}]$
$I_{\rm HCO(4-3)} \\ L'_{\rm HCO(4-3)} \\ R_{\rm CO32}^{\rm HCO43}$	$(Jy km s^{-1})$ $(K km s^{-1} pc^2)$	•••	$ \leq 0.48 \\ \leq 1.5 \times 10^7 \\ \leq 0.14 $
$I_{\rm CO(2-1)} \\ L'_{\rm CO(2-1)}$	$(Jy km s^{-1})$ $(K km s^{-1} pc^2)$		$\leq 1.6 \\ \leq 1.3 \times 10^7$
$\mathrm{SFR}(\mathrm{H}_2)^b$	$(M_{\odot}{ m yr}^{-1})$	$\leq 2 \times 10^{-4}$	0.004
$\Sigma_{\rm SFR}({\rm H}_2)^b$	$(M_{\odot}{ m yr^{-1}kpc^{-2}})$	$[\le 0.009]$ ≤ 0.004 [< 0.2]	[0.2] 0.0011 [0.06]
$\mathrm{SFR}(\mathrm{H}\alpha)^c$ $\Sigma_{\mathrm{SFR}}(\mathrm{H}\alpha)$	$(M_{\odot} \mathrm{yr}^{-1}) \ (M_{\odot} \mathrm{yr}^{-1})$	· J 	$\stackrel{\scriptsize <}{\leq} 0.15 \\ {\leq} 0.13$

- Galactic CO(3-2)/CO(1-0)比を仮
 定。CFをかませてM_{H2}に変換。
- 中心部は1e5Msun(GMC程度) しかなく、著しいガス欠。
 → ただし、この少ないガスでも
 Edd.-limited accretionを1e5年程
 度は続けられる。
 → たまたま今休憩中なのか
 も。。
- 星形成も同様に欠乏。Haから見 積もっても同じ。

一方、>kpc scaleのガス質量は他のSeyfert銀河と同程度。すなわち、

<100pc程度のガスしかon-goingな降着とは関係付けられない。

降着現象で自然に枯渇

 実は中心のちょっと横に1e6 Msunのガス塊があるので、 これが次のfuelingを担うのだろう。

アウトフローで吹き飛ばした

- Cicone+14等から類推。
- Gupta+15によると、UFOが存在している(~0.1--0.2c) → いかにもTombesi+15ぽいことが起きていそう、と推測。
- ただし、[OIII] mapはbi-conicalな形ではない。
 → face-onでoutflowを見ているから?さらなるIFU観測を検討中。

ごく一瞬の燃料投下が起きた?

- 1e5年のepisode (Schawinski+15)を想定すれば、現在のMBHを達 成するのに必要なepisodesは~400。
- 一方、[OIII]観測からionization bubbleの広がりはc*1000年分程
 度。つまり、Mrk 590は1000年間"だけ"明るかったということを示
 唆。この場合だと、duty cycle ~ 30,000と莫大。
- 最低限、last episodeが特殊なものだったと仮定すると、1000年の
 活動を支えるための燃料は<u>~100Msun</u>。
 → なにかしらのバースト的な現象があったのかも。

CLAの共通項は? (推測)

- Mrk 590:ガス欠。
- NGC 4151:ガス欠で有名。
- NGC 1097:ガスはそこそこ。ただし MBHが大きい。
- …ということで、これらはMgas/MBH
 の著しく小さい天体と予測される。

星形成由来の機構で、この間欠的な現象を説明できるか? NGC 4151は、Hβの強→弱→強を10-20年で繰り返した(!)

もしくは、降着円盤スケールの不安定性が効くのか? c.f., 矮新星のアウトバースト(Osaki et al); thermal inst.?

連続波からの情報:不十分

- 中心はガスは見えないくせに連続波は検出できている。
- Nuclear SEDを描いて、引き出せる情報を議論。

- (1) Band 7 continuum = dustだと思い、温度(53K)と質量を出す。
 → M_{H2} = 1e7 Msun(全然違う...)
 → 大きな不定性の範囲でCO-derivedの値と合う。
- (2) synchrotron + free-freeの寄与を調べる: radioの情報不足で不可能。

ガスの分も含めて、追観測が必須!

AGN-galaxy evolutionへの示唆

- 母銀河のガスもobscurationに寄与するという説が根強い。
 → (molecular) gas-richのときはtype-2、晴れ上がるとtype-1
 - → これは、intrinsicにはtype-2もBLRを持つという立場。
- 一方、Elitzur+14によると、降着率に応じてtype-1 → type-2の遷移が 起きる(True type-2を予言)。
- 今回のMrk 590での20年での急激な光度変動がAGNで頻繁に見られる
 現象なのであれば、上記のようなsystematicな変化を調べることは難しくなる。。
- 幸運にも(?)、OzDESサーベイ(King+15)で500のQSOを5年モニ ターreverberationするので、CLAの割合が見えてくるだろう。

まとめ (Koay+12)

- Changing look AGN、かつこの20年で2桁光度を落としたMrk 590をALMAで観測。
 分子ガスは枯渇していると予測していた。
- たしかに、中心~100pc領域ではCO(3-2)放射は受からず、当初の予測をサポート。
 M_{H2} ~ 1e5-6 Msun
- その一方で、upper limit massの~1e5Msunでも、あと1e5年程度はEdd.limited降着 を持続できる。
 - → もしかしたら、今はたまたま休憩phaseなのかも。
- Changing look AGNで星形成が弱いのは確からしい。
- >kpcスケールのガス質量は他のSeyfertと同等。つまり、このスケールのガスはongoingな降着には関係ない。
- 大サンプルのmonitoringで、CLAが全AGNの何%存在するのかを調べることが重要。