ALMA reveals weak [NII] emission in "typical" galaxies and intense starbursts at z = 5-6

R, Pavesi et al. 2016, arXiv: 1607.02520v3 accepted for publication in the Astrophysical Journal

Journal Club (2016/11/25)

0. Abstract

ABSTRACT

We report interferometric measurements of [NII] $205 \,\mu m$ fine-structure line emission from a representative sample of three galaxies at z = 5-6 using the Atacama Large (sub)Millimeter Array (ALMA). These galaxies were previously detected in [CII] and far-infrared continuum emission and span almost two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized inter-stellar medium properties for galaxies in the first billion years of cosmic time, separated by their $L_{\rm [CII]}/L_{\rm [NII]}$ ratio. We find extremely low [NII] emission compared to [CII] $(L_{\text{[CII]}}/L_{\text{[NII]}} = 68^{+200}_{-28})$ from a "typical" ~ L_{UV}^* star-forming galaxy, likely directly or indirectly (by its effect on the radiation field) related to low dust abundance and low metallicity. The infrared-luminous modestly star-forming Lyman Break Galaxy (LBG) in our sample is characterized by an ionized-gas fraction $(L_{\rm [CIII]}/L_{\rm [NIII]} \leq 20)$ typical of local star-forming galaxies and shows evidence for spatial variations in its ionized-gas fraction across an extended gas reservoir. The extreme SFR, warm and compact dusty starburst AzTEC-3 shows an ionized fraction higher than expected given its star-formation rate surface density $(L_{[CII]}/L_{[NII]} = 22 \pm 8)$ suggesting that [NII] dominantly traces a diffuse ionized medium rather than star-forming HII regions in this type of galaxy. This highest redshift sample of [NII] detections provides some of the first constraints on ionized and neutral gas modeling attempts and on the structure of the inter-stellar medium at z = 5-6 in "normal" galaxies and starbursts.

- ・ビッグバン後 10 億年程度の宇宙は銀河進化を理解する上で重要な時代
 - →Galaxy assembly の初期段階を直接制限できる!
 - 星形成の初期段階, IGM からの原始ガス流入, ISM の化学進化が進んでいない時代
- この時代で, ISM と星形成の関係を調べるのは銀河形 成モデルのテストベッド

- z ~ 2-3の galaxy assembly の時代と相補的

→銀河の ISM の物理状態を正確に診断することが必要!

- これまで, z > 5 の ISM 診断のターゲットは SMG やク エーサー母銀河に限られていた
 - → 技術の発達で z > 5 の "普通の" 星形成銀河もター ゲットにできるようになってきた
- ・どんな手法で診断するのが良いか?
 - CO excitation ladder? → z > 5 での観測は難しい
 - サブミリ・遠赤外微細構造棋戦
 - →ALMA で観測可能, ダスト減光の影響が小さい 複数を組み合わせることで, 物理状態を制限可能
- 本論文では [NII] 205 µm, [CII] 158 µm を利用

- [NII]
 - N⁺ のイオン化エネルギー: 14.5 eV
 - ◆広がった HII 領域の envelope, 原子・分子雲の電 離表面, WIM, etc...
- [CII]
 - C+ のイオン化エネルギー: 11.3 eV
 - →電離領域, PDR, CNM, CO-dark cloud, etc...
- [CII]158/[NII]205
 - HII 領域において, 両者の臨界密度はほぼ同じ (n_{crit} ~ 50 cm⁻³)
 - →[CII] が電離領域から放出されている割合の指標

- 本論文では z = 5-6 の 3 つの星形成銀河について議論 する
 - Hyper-luminous nuclear starburst (AzTEC-3; SFR ~ 1100 M_/yr, $L_{FIR} \sim 10^{13} L_{\odot}$)
 - Dusty, high star-forming LBG (HZ10; SFR ~ 170 $M_{\odot}/yr,$ L_{FIR} ~ $10^{12}\,L_{\odot})$
 - Typical less star-forming LBG (LBG-1; SFR ~ 10-30 $M_{\odot}/yr,\,L_{FIR}\sim 10^{11}\,L_{\odot})$
- 2 つの LBG は z = 5-6 の ~ L^{*}_{UV}の main sequence 星形 成銀河
- •3 つすべてで, [CII] 158 µm が検出済み

2. Observation

- [NII] 205 µm
 - ALMA Band 6 (Cycle 3)
 - アンテナ台数: 32-47

	σ _{cont.} [μJy/b]	σ _{line} (~ 40 km/s) [mJy/b]	beam size
AzTEC-3	20	0.34	1.4" × 1.2"
HZ10	35	0.20	1.7" × 1.2"
LBG-1	16	0.21	1.3" × 1.1"

- [CII] 158 µm
 - ALMA archival data (Cycle 0, Cycle 1)

➢ Riechers + 2014, Capak + 2015

3. Results AzTEC-3

Quantity	AzTEC-3
[CII] line properties	
$\nu_{\rm obs}({\rm GHz})$	301.771 ± 0.006
Redshift	5.29795 ± 0.00013
$S_{[CII]}(mJy)$	17.5 ± 0.7
$FWHM_{[CII]}$ (km s ⁻¹)	410 ± 15
$I_{\rm [CII]}$ (Jy km s ⁻¹)	7.8 ± 0.4
$L_{\rm [CII]} (10^9 L_{\odot})$	6.4 ± 0.3
deconvolved size	$(0.65'' \pm 0.06'') \times (0.33'' \pm 0.07'')$
size (kpc ²)	$(4.0 \pm 0.4) \times (2.1 \pm 0.4)$
[NII] line properties	
$\nu_{\rm obs}({\rm GHz})$	232.02 ± 0.06
$S_{[\rm NII]}$ (mJy)	0.65 ± 0.14
$FWHM_{[NII]}$ (km s ⁻¹)	660 ± 180
$I_{[\rm NII]}$ (Jy km s ⁻¹)	0.46 ± 0.16
$L_{[\rm NII]} (10^9 L_{\odot})$	0.29 ± 0.10
$L_{[CII]}/L_{[NII]}$	22 ± 8

7

3. Results LBG-1

Quantity	LBG-1
[CII] line properties	
$\nu_{\rm obs}({\rm GHz})$	301.980 ± 0.007
Redshift	5.29359 ± 0.00015
$S_{\rm [CII]}(mJy)$	8.2 ± 0.5
$FWHM_{[CII]} \text{ (km s}^{-1}\text{)}$	230 ± 20
$I_{\rm [CII]}$ (Jy km s ⁻¹)	2.1 ± 0.2
$L_{[CII]} (10^9 L_{\odot})$	1.71 ± 0.16
deconvolved size	$(1.00'' \pm 0.12'') \times (0.57'' \pm 0.10'')$
size (kpc ²)	$(6.2 \pm 0.7) \times (3.5 \pm 0.6)$
[NII] line properties	
$\nu_{\rm obs}({\rm GHz})$	232.1 ± 0.3
$S_{[\rm NII]}$ (mJy)	0.20 ± 0.09
$FWHM_{[NII]} (\text{km s}^{-1})$	190 ± 90
$I_{\rm [NII]}$ (Jy km s ⁻¹)	0.04 ± 0.03
$\dot{L}_{[\text{NII}]}$ (10 ⁹ L_{\odot})	0.025 ± 0.019
$L_{\rm [CII]}/L_{\rm [NII]}$	68^{+200}_{-28}

11

2σ(!) tentative detection? [CII]/[NII] ~ 68!

4. CLOUDY modeling of the [CII]/[NII] ratio

Log[Intensity] (erg $cm^{-2} s^{-1}$)

- CLOUDY v13.03 (Ferland + 2013) を用いたモデル
 - Constant pressure
 - Spherical geometry
 - A_v = 10 まで計算
 - Stellar SED: Starburst99
 Intense starburst (age = 1, 10 Myr)

> Z = Z_•

- $\begin{array}{c}
 \begin{array}{c}
 \begin{array}{c}
 \begin{array}{c}
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \begin{array}{c}
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array}$ \left(\begin{array}{c}
 \end{array} \\
 \end{array}
 \left(\begin{array}{c}
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array}
 \left(\begin{array}{c}
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \end{array} \\
 \bigg) \\
 \end{array} \\
 \end{array} \\
 \bigg) \\
 \bigg{)} \\
 \end{array} \\
 \bigg{)} \\
- ガスの element abundance は Nagao + 2011
- Orion-like なダスト, 磁場 (~10⁻⁵G)

4. CLOUDY modeling of the [CII]/[NII] ratio

• CLOUDY v13.03 (Ferland + 2013) を用いたモデル

5. Analysis of the individual sources AzTEC-3

- [CII]/[NII] 比 (~ 22) が近傍の ULIRGs や high-z SMG の 典型的な値 (~ 10-20) よりもやや小さい
 - AzTEC-3 では [CII] にもダスト減光が効いている (Riecherd + 2014) ため, [CII]/[NII] > 22 となり得る
 - AzTEC-3 中心の HII 領域の密度 (~ 10³ cm⁻³) を考えると, CLOUDY は [CII]/[NII] ~ 100 を予言
- →[CII] は, 高密度でコンパクトな星形成領域, [NII] は, 広がった密度の小さい領域から放射
- →[NII] は、銀河中心に落ち込む or 銀河中心から吹き飛ば された電離ガスから放出
- →[NII]の速度幅が大きいのは、トレースするガスの dynamical mass が大きい or 電離ガス flow を見ている

5. Analysis of the individual sources AzTEC-3

- [CII]/[NII] 比 (~ 22) が近傍の ULIRGs や high-z SMG の 典型的な値 (~ 10-20) よりもやや小さい
 - AzTEC-3 では [CII] にもダスト減光が効いている (Riecherd + 2014) ため, [CII]/[NII] > 22 となり得る
 - AzTEC-3 中心の HII 領域の密度 (~ 10³ cm⁻³) を考えると, CLOUDY は [CII]/[NII] ~ 100 を予言
- →[CII] は, 高密度でコンパクトな星形成領域, [NII] は, 広がった密度の小さい領域から放射
- ✓ [NII] はコンパクトな star-forming core を直接とりかこ む薄い電離ガスから放射されている
- ✓ [NII] の広がった構造は、激しい星形成によって、吹き飛ばされたガスの out-flow or 激しい星形成活動へガスを供給する in-flow をトレースしている

5. Analysis of the individual sources HZ10

- ・銀河全体で見た時, [CII]/[NII] ~ 20 で近傍の星形成銀河
 と同等
 - [NII] と同じ領域での [CII] との比, [NII] のピークの 位置における [CII] との比 ~ 10
 - →銀河内部における,電離度の空間的ばらつきを反映

→rest-UVの分光も電離度の空間的ばらつきを示唆?

5. Analysis of the individual sources HZ10

- ・銀河全体で見た時, [CII]/[NII] ~ 20 で近傍の星形成銀河
 と同等
 - [NII] と同じ速度成分の [CII] との比, [NII] のピーク の位置における [CII] との比 ~ 10
 - →銀河内部における,電離度の空間的ばらつきを反映

→rest-UVの分光も電離度の空間的ばらつきを示唆?

5. Analysis of the individual sources LBG-1

• [CII]/[NII] = 68!

- ほとんどの [CII] は電離領域以外から放射
▶ISM のほとんどが広がった中性の PDR ガス?
✓ 小さなダスト-ガス比を仮定すると説明できる

- 電離ガスがより高階電離である (N+が N++ に電離)?

▶ダスト量が少ない銀河で,星形成による hard な輻射あると ISM の電離が進む

✓ cf. 近傍の矮小銀河 (Cormier + 2015)

✓ 高階電離ならば [OIII] 輝線 (~ 35 eV) が観測される?

- そもそも金属量が小さく, N/C abundance 比が小さい?

6. Discussion & conclusion

6. Discussion & conclusion

- HZ10 で, [NII] と [CII] の空間分布の違いが (margincal に) 検出
 - High-z の "普通の"銀河において, ISM の状態の空間 分布を調べる上で, [NII] のような遠赤外微細構造輝 線が有用である
- LBG-1 のような若い星形成銀河で [CII]/[NII] 比が大き い
 - この種の銀河で [CII] が essential neutral gas coolant
 - 電離ガスを高階電離状態になるくらい輻射が硬いは ず?
 - ▶宇宙再電離の電離源の候補?

