A deep ALMA image of the Hubble Ultra Deep Field

J.S. Dunlop et al. submitted to MNRAS

Presented by H. Umehata

Abstract

ABSTRACT

We present the results of the first, deep ALMA imaging covering the full $\simeq 4.5 \,\mathrm{arcmin}^2$ of the Hubble Ultra Deep Field (HUDF) as previously imaged with WFC3/IR on the HST. Using a mosaic of 45 ALMA pointings, we have obtained a homogeneous image of the HUDF at $\lambda = 1.3$ mm, achieving an rms sensitivity $\sigma_{1.3} \simeq 35 \,\mu$ Jy, at a resolution of $\simeq 0.7$ arcsec. From an initial list of $\simeq 50 > 3.5\sigma$ peaks, a rigorous analysis confirms 16 sources with flux densities $S_{1,3} > 120 \,\mu$ Jy. All of these have secure galaxy counterparts with robust redshifts ($\langle z \rangle = 2.15$), and <u>12</u> are also detected at 6 GHz in new ultra-deep JVLA imaging. Due to the wealth of supporting data in this unique field, the physical properties of the ALMA sources are well constrained, including, crucially, their stellar masses (M_*) and UV+FIR star-formation rates (SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at $z \ge 2$ our ALMA sample contains 7 of the 9 galaxies in the HUDF with $M_* \geq 2 \times 10^{10} \,\mathrm{M_{\odot}}$, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detected sources, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to $S_{1,3} \simeq 10 \,\mu \text{Jy}$. We find strong evidence for a steep 'main sequence' for star-forming galaxies at $z \simeq 2$, with SFR $\propto M_*$ and a mean specific SFR $\simeq 2.2 \, \mathrm{Gyr}^{-1}$. Moreover, we find that $\simeq 85\%$ of total star formation at $z \simeq 2$ is enshrouded in dust, with $\simeq 65\%$ of all star formation at this epoch occurring in high-mass galaxies $(M_* > 2 \times 10^{10} \,\mathrm{M_{\odot}})$, for which the average obscured:unobscured SF ratio is $\simeq 200$. Finally, we combine our new ALMA results with the existing HST data to revisit the cosmic evolution of star-formation rate density (ρ_{SFR}) ; we find that ρ_{SFR} peaks at $z \simeq 2.5$, and that the star-forming Universe transits from primarily unobscured to primarily obscured thereafter at $z \simeq 4$.

ALMA Observations

- § Observations
 - 13 days in 2014-2015
 - Max baseline: 550-1250 m
 - 45-pointing mosaic (separated by x0.8 antenna beam)
 - \circ one SB terminated after 20 pointing -> included.
- § Reduction and Imaging
 - standard procedures using CASA
 - CLEAN with natural weighting:

-> synthesized beam: 589 x 503 mas^2

• A 220 x 180 kλ taper:

-> ~requested beam: 707x672 mas^2

- final mosaic sensitivity at center: 34 uJy/beam
- no deconvolution.

Other wavelength data

§ Optical/NIR 50 depth

- ACS: B,V,I,z -> 29.7,30.2, 29.9, 29.8
- WFC3: Y,J125,J140,H160 -> 29.7, 29.2, 29.2, 29.2
- HAWK-I: Ks -> 26.5
- § Other data
 - Spitzer / Herschel

-> 'we fitted the Herschel maps with appropriate beams at the ALMA source positions'

• Radio: rms 0.32 uJy/beam at 6 GHz

 $\rightarrow 27$ radio sources with ≥ 5 sigma

• MUSE: 3x3 mosaic of 18.2 ksec (+ 65 ksec in the centre)

-> detected line(s) for 6/16 ALMA sources

-> 4/6 are new.

ALMA Source Extraction

§ Method

- create 'noise' map
 - -> evaluated the standard deviation for each pixel.
- then make 'SNR' map
- Search and Destroy. (AIPS/SAD-like?)

§ Survey area

- 4.4 arcmin² with σ <40 uJy (Cf. 34 uJy at centre)
- positive: 47 sources with >=3.50 negative: 29 sources with >=3.50 => 15-20 sources would be real.
 - (...counts as a function of SNR?)
 - \circ 5 sources with 60 are 'secure'
 - \circ 7 'negative' sources with 4σ

ALMA Source Catalog

ID	${ m RA}~({ m ALMA})/{ m deg}$	${ m Dec}~({ m ALMA}) / { m deg}$	$S_{1.3 m mm} \ /\mu m Jy$	S/N 1.3mm	$\begin{array}{c} {\rm RA} \ ({\it HST}) \\ /{\rm deg} \end{array}$	${ m Dec} (HST) / { m deg}$	Δ_1 /arcsec	Δ_2 /arcsec	H_{160} /ABmag	z	Ref
UDF1	53.18348	-27.77667	924 ± 76	18.37	53.18345	-27.77658	0.33	0.13	24.75	3.00	
UDF2	53.18137	-27.77757	996 ± 87	16.82	53.18140	-27.77746	0.38	0.15	24.70	2.794	1
UDF3	53.16062	-27.77627	863 ± 84	13.99	53.16060	-27.77613	0.51	0.27	23.41	2.541	2
UDF4	53.17090	-27.77544	303 ± 46	6.63	53.17090	-27.77539	0.18	0.06	24.85	2.43	
UDF5	53.15398	-27.79087	311 ± 49	6.33	53.15405	-27.79091	0.24	0.42	23.30	1.759	3
UDF6	53.14347	-27.78327	239 ± 49	4.93	53.14347	-27.78321	0.22	0.03	22.27	1.411	2
UDF7	53.18051	-27.77970	231 ± 48	4.92	53.18052	-27.77965	0.21	0.06	24.17	2.59	
UDF8	53.16559	-27.76990	208 ± 46	4.50	53.16555	-27.76979	0.43	0.22	21.75	1.552	4
UDF9	53.18092	-27.77624	198 ± 39	4.26	53.18105	-27.77617	0.46	0.40	21.41	0.667	2
UDF10	53.16981	-27.79697	184 ± 46	4.02	53.16969	-27.79702	0.42	0.56	23.32	2.086	3
UDF11	53.16695	-27.79884	186 ± 46	4.02	53.16690	-27.79869	0.54	0.31	21.62	1.996	2,4
UDF12	53.17203	-27.79517	154 ± 40	3.86	53.17212	-27.79509	0.39	0.28	27.00	5.000	5
UDF13	53.14622	-27.77994	174 ± 45	3.85	53.14615	-27.77988	0.31	0.24	23.27	2.497	3
UDF14	53.17067	-27.78204	160 ± 44	3.67	53.17069	-27.78197	0.24	0.06	22.76	0.769	2
UDF15	53.14897	-27.78194	166 ± 46	3.56	53.14902	-27.78196	0.18	0.36	23.37	1.721	3
UDF16	53.17655	-27.78550	155 ± 44	3.51	53.17658	-27.78545	0.22	0.09	21.42	1.314	2, 6

i+Y+H 6"x6"

8

Number Counts

- 'in very good agreement with integration of the Schechter function of H16'.
- significant work still needs to be done to clarify the faint-end.

Properties

	↓ SED Fit									
	Chabrier IMF			\downarrow SED Fit \downarrow			\downarrow Multiple Templates			
ID	$\log_{10}(M_*/{ m M}_\odot)$	$\frac{\rm SFR_{\rm UV}}{\rm /M_{\odot}yr^{-1}}$	$A_{ m V}$ /mag	$\frac{\rm SFR_{SED}}{\rm /M_{\odot}yr^{-1}}$	$\frac{\rm SFR_{FIR1}}{/\rm M_{\odot}yr^{-1}}$	$\frac{\rm SFR_{FIR2}}{/\rm M_{\odot}yr^{-1}}$	$\frac{\rm SFR_{Rad}}{\rm /M_{\odot}yr^{-1}}$	${ m SFR_{obs}}/{ m SFR_{UV}}$	${ m sSFR} / { m Gyr}^{-1}$	
UDF1 UDF2	$10.7{\pm}0.10$ $11.1{\pm}0.15$	$0.31{\pm}0.05 \\ 0.32{\pm}0.10$	$\begin{array}{c} 3.1 \\ 2.2 \end{array}$	$\begin{array}{c} 399.4\\ 50.2 \end{array}$	$326 \pm 83 \\ 247 \pm 76$	$364{\pm}82 \\ 194{\pm}64$	$439\pm28\ 242\pm22$	$1052 \pm 317 \\ 772 \pm 339$	$6.50{\pm}2.24$ $1.96{\pm}0.92$	
UDF3 [†] UDF4	10.3 ± 0.15 10.5 ± 0.15 10.4 ± 0.15	4.70 ± 0.30 0.43 ± 0.20	$\begin{array}{c} 0.9 \\ 1.6 \\ 0.4 \end{array}$	42.0 20.0	195 ± 69 $94\pm\ 4$	173 ± 1 58 ± 5	400 ± 17 89 ± 17	41 ± 15 219 ± 102	9.77 ± 4.88 2.97 ± 1.05	
UDF5 UDF6 UDF7	10.4 ± 0.15 10.5 ± 0.10 10.6 ± 0.10	0.20 ± 0.05 0.10 ± 0.02 0.50 ± 0.03	2.4 2.8 1.5	36.1 78.0 16 5	102 ± 7 87 ± 11 56 ± 22	67 ± 25 66 ± 5 77 ± 42	86 ± 6 68 ± 5 617 ± 20	510 ± 132 870 ± 205 112 ± 45	4.06 ± 1.46 2.75 ± 0.73 1.41 ± 0.64	
UDF8 UDF9	10.0 ± 0.10 11.2 ± 0.15 10.0 ± 0.10	0.98 ± 0.02 0.06 ± 0.01	1.0 1.6 0.9	$\begin{array}{c} 10.3\\ 35.8\\ 0.5\end{array}$	149 ± 90 23 ± 25	94 ± 37 5 ± 2	73 ± 5 5 ± 1	112 ± 43 152 ± 92 383 ± 421	1.41 ± 0.04 0.94 ± 0.66 2.30 ± 2.56	
UDF10 UDF11	$10.2{\pm}0.15$ $10.8{\pm}0.10$	$1.14{\pm}0.10$ $6.29{\pm}0.20$	$\begin{array}{c} 1.5 \\ 1.4 \end{array}$	$\begin{array}{c} 37.0\\ 162.8 \end{array}$	$\begin{array}{c} 45{\pm}22\\ 162{\pm}94 \end{array}$	$\begin{array}{c} 34\pm \ 7\\ 232{\pm}10 \end{array}$	${<}35$ 172 ${\pm}14$	$\begin{array}{rrr} 39\pm \ 20\\ 26\pm \ 15\end{array}$	$2.84{\pm}1.71$ $2.57{\pm}1.60$	
UDF12 UDF13	$9.6{\pm}0.15 \\ 10.8{\pm}0.10$	$1.55{\pm}0.10\ 0.95{\pm}0.05$	$\begin{array}{c} 0.2 \\ 1.3 \end{array}$	$\begin{array}{c} 2.6 \\ 18.0 \end{array}$	$\begin{array}{c} 37{\pm}14\\ 68{\pm}18 \end{array}$	$\begin{array}{ccc} 21\pm & 7 \\ 60{\pm}19 \end{array}$	$<\!$	$\begin{array}{ccc} 24\pm \ 10\\ 72\pm \ 19 \end{array}$	$9.29{\pm}4.80$ $1.08{\pm}0.38$	
UDF14 UDF15	$9.7{\pm}0.10$ $9.9{\pm}0.15$	0.05 ± 0.01 1.14 ± 0.02	$\begin{array}{c} 1.3 \\ 1.1 \\ \end{array}$	1.0 15.5	$44{\pm}17$ $38{\pm}27$	3 ± 2 25 ± 8	<4 <20	880 ± 383 33 ± 24	8.78 ± 3.96 4.78 ± 3.79	
UDF16	$10.9 {\pm} 0.10$	$0.10 {\pm} 0.05$	0.6	0.5	$40{\pm}18$	$25\pm~4$	$38\pm$ 3	400 ± 269	0.50 ± 0.26	

↑ rest frame UV (1500A) ↑ HUDF Template= 'Best'

个 6GHz

Redshifts

- 13 spec-z + 3 photo-z
- The distribution is in very good agreement with classical SMGs.

-> <z>=2.15 13/16 are at z=1.5-3.

- only one detection beyond z=3.1
 => the absence of high-mass galaxies at these redshifts.
- the decline at z<1.5
 => quenching of SF activity in high-mass galaxies.

Combined Templates

Stacking Analysis

The steep dependence of Dust-obscured SF on M*

14

EBL

- \bullet consistent with the 1- σ lower bound on the COBE estimate
- 'we would require to approximately double the flux density in HUDF'

The star-forming MS

16

Obscured vs unobscured

Cosmic star-formation history

- 'This is the first time a direct census of ρ _SFR(obscured) has been performed at these redshift.'
- At z>4, most of the SF in the Universe is unobscured.

Abstract

ABSTRACT

We present the results of the first, deep ALMA imaging covering the full $\simeq 4.5 \,\mathrm{arcmin}^2$ of the Hubble Ultra Deep Field (HUDF) as previously imaged with WFC3/IR on the HST. Using a mosaic of 45 ALMA pointings, we have obtained a homogeneous image of the HUDF at $\lambda = 1.3$ mm, achieving an rms sensitivity $\sigma_{1.3} \simeq 35 \,\mu$ Jy, at a resolution of $\simeq 0.7$ arcsec. From an initial list of $\simeq 50 > 3.5\sigma$ peaks, a rigorous analysis confirms 16 sources with flux densities $S_{1,3} > 120 \,\mu$ Jy. All of these have secure galaxy counterparts with robust redshifts ($\langle z \rangle = 2.15$), and <u>12</u> are also detected at 6 GHz in new ultra-deep JVLA imaging. Due to the wealth of supporting data in this unique field, the physical properties of the ALMA sources are well constrained, including, crucially, their stellar masses (M_*) and UV+FIR star-formation rates (SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at $z \ge 2$ our ALMA sample contains 7 of the 9 galaxies in the HUDF with $M_* \geq 2 \times 10^{10} \,\mathrm{M_{\odot}}$, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detected sources, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to $S_{1,3} \simeq 10 \,\mu \text{Jy}$. We find strong evidence for a steep 'main sequence' for star-forming galaxies at $z \simeq 2$, with SFR $\propto M_*$ and a mean specific SFR $\simeq 2.2 \, \mathrm{Gyr}^{-1}$. Moreover, we find that $\simeq 85\%$ of total star formation at $z \simeq 2$ is enshrouded in dust, with $\simeq 65\%$ of all star formation at this epoch occurring in high-mass galaxies $(M_* > 2 \times 10^{10} \,\mathrm{M_{\odot}})$, for which the average obscured:unobscured SF ratio is $\simeq 200$. Finally, we combine our new ALMA results with the existing HST data to revisit the cosmic evolution of star-formation rate density (ρ_{SFR}) ; we find that ρ_{SFR} peaks at $z \simeq 2.5$, and that the star-forming Universe transits from primarily unobscured to primarily obscured thereafter at $z \simeq 4$.