河野研Journal Club

Multi-phase Nature of a Radiationdriven Fountain with Nuclear Starburst in a Low-mass Active Galactic Nucleus (Wada et al. 2016, ApJ, 828, L19) +α

泉拓磨 (学振PD/東京大)

1. Introduction-(1) General Background of AGN Tori

The Idea of AGN Dusty/molecular Torus

広輝線を持つ1型と、持たない2型を「統一」
 して考えるための概念。

(Antonucci 1993 ARA&A, 31, 473; Urry & Padovani 1995, PASP, 107, 803)

- AGN降着円盤 (Shakura & Sunyaev 1973, A&A, 24, 337) のUV光を吸収し、IRに変換する機能 を持つ (Barvainis 1987, ApJ, 320, 537)

The Idea of AGN Dusty/molecular Torus

- 1型 vs 2型の数比 (Maiolino & Rieke 1995, ApJ, 454, 95) を説明するため、H/R ~1を 要請
- モデルが満たすべき要件は、
 (1) 力学的安定性
 (2) Scale heightの維持
 これらをself-consistentに説明できるモデ ルが必要!
- さらに、circumnuclear disk (CND) のcold materialによるadditional obscurationも議 論されている。

近年の観測の進展 (1/3): 赤外線干渉計観測

- VLTI/MIDIによる超高空間分解能観測@12μm
- ダスト放射は、(薄い円盤に加えて)torus
 polar axis方向に伸びていることが判明

(e.g., Tristram et al. 2014, A&A, 563, A82; Lopez-Gonzaga et al. 2014, A&A, 565, A71; Honig et al. 2013, ApJ, 771, 87; Lopez-Gonzaga et al. 2016, A&A, 591, A47)

- 最も高品質なデータがあるのはCircinus

- 古典的なトーラスの描像とは<u>全く異なる</u>分布!
- その起源は?AGNに付随するionized gasの double hollow coneとの関係は??

近年の観測の進展 (2/3): 光度依存性

高光度側のobs. fraction低下は、receding torus model (Laurence 1991, MNRAS, 252, 586)の描像と一致するものの…。

近年の観測の進展 (3/3): CND領域のH₂ガス

1. Introduction-(2) Wada et al. series 概観

- TI's comment - Hydrodynamical simulationを駆使した"self-consistent"なモデルとして注目されている。

Supernova-driven turbulent model

Wada & Norman 2002, ApJ, 566, L21; Wada et al. 2009, ApJ, 702, 63

- CND領域での超新星爆発で、ガスのscale heightをあげてH/R ~1を実現。
- Rotationally-supported thin disk → Turbulent-supported thick disk
- 星形成円盤のclumpinessが、そのままtorus clumpinessとなる。
- 疑問:もっと中心核近傍での遮蔽がほしい?SEDの整合性は?

- CND領域での超新星爆発で、ガスのscale heightをあげてH/R~1を実現。
- Rotationally-supported thin disk → Turbulent-supported thick disk
- 星形成円盤のclumpinessが、そのままtorus clumpinessとなる。
- 疑問:もっと中心核近傍での遮蔽がほしい?SEDの整合性は?

Radiation-driven fountain model

Wada 2012, ApJ, 758, 66; Wada 2015, ApJ, 812, 82; Schartmann et al. 2014, MNRAS, 445, 3878

- 自己重力円盤に対するAGNからのX線放射 (H-chemistry) と輻射圧の影響を計算。
- Supernova feedbackは含めていない。
- 準定常的なガスのcirculationが、実効的なtoroidal structureとなる。Polar elongationも再現。
- Obscured fractionのAGN光度依存性も再現 (Wada+15)

Radiation-driven fountain model: 問題点

- 円盤をほとんどedge-onで見ないかぎり、9.7µmのsillicate featureがtoo strong emissionで 見えてしまう (観測はweaker emission or absorption)
 → fountainで高温ダストが上空まで巻き上げられることによる
- Colder materialによる追加の遮蔽を導入したい。→ 次の研究へのmotivation !

MULTI-PHASE NATURE OF A RADIATION-DRIVEN FOUNTAIN WITH NUCLEAR STARBURST IN A LOW-MASS ACTIVE GALACTIC NUCLEUS

KEIICHI WADA^{1,4}, MARC SCHARTMANN², AND ROWIN MEIJERINK³ Kagoshima University, Kagoshima 890-0065, Japan; wada@astrophysics.jp

² Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia ³ Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands

Received 2016 July 20; revised 2016 August 19; accepted 2016 August 24; published 2016 September 9

The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small $(2 \times 10^6 M_{\odot})$ black hole using three-dimensional (3D) radiationhydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-raydominated region in the "radiation-driven fountain" with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick "torus" around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick $(h/r \gtrsim 1)$ atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase (>1000 K) as well as in a cold (<100 K), dense $(>10^3 \text{ cm}^{-3})$ phase. The velocity dispersion of H₂ in the vertical direction is comparable to the rotational velocity, which is consistent with near-infrared observations of nearby Seyfert galaxies. Using 3D radiation transfer calculations for the dust emission, we find polar emission in the mid-infrared band (12 μ m), which is associated with bipolar outflows, as suggested in recent interferometric observations of nearby AGNs. If the viewing angle for the nucleus is larger than 75°, the spectral energy distribution is consistent with that of the Circinus galaxy. The multi-phase interstellar medium observed in optical/infrared and X-ray observations is also discussed.

> The authors are grateful to the anonymous referee for constructive comments and suggestions. We thank Dr. Takuma Izumi for his valuable comments. Numerical computations

Numerical Methods

- 3D multi-phase hydrodynamic simulation (Eulerian)
 256³ grid = 64³ pc (0.125 pc resolution: uniform)
- 中心AGNからのradiative feedback: ray-tracing methodで追う。
 ダストへの輻射圧
 - ガスへのX-ray heating/ionization (XDR; Meijerink & Spaans 2005, A&A, 436, 397)
- 中心AGNからの放射はnon-spherical: 256³本のrayをもって各点でのfluxを計算。
- Cold gas (CND)では、
 - 超新星爆発のfeedback
 - 20 < T [K] < 1e8 でのradiative cooling w/ Z_{sun}
 - Uniform FUV radiation field of 1000 Go (光電加熱)
- ダストとガスの運動は同期させている。
- Meijerink & Spaans 05のchemical networkを用いて、いくつかの代表的なイオン/原子 /分子存在量を計算:H,H₂,H⁺,H₃⁺,C,C⁺,CO,H₂O,H₃O⁺, HCO⁺, etc.

初期条件: Circinus galaxy

- MBH = 2e6 M_{sun}
 → 比較的小さいM_{BH}、ALMA観測も視野に入れてCircinusをモデル化。
- Mgas of the CND = 2e6 Msun
- 一様密度の軸対象回転円盤を作成し、力学的に落ち着いたら各種
- feedback (AGN radiation, SNe) を作用させ始める。
- AGNの性質: L_{Bol} = 5e43 erg/s, λ_{Edd} = 0.2
 - → (1) Fuv :cosθ(1+2cosθ)の角度依存性あり
 - (Netzer 1987, MNRAS, 225, 55) → (2) L_x (等方的): 今の場合は、~3e42 erg/s

Results: Gas Distribution (Density)

 H_2

Results: Gas Temperature

円盤midplaneの分子ガスの温度は<100 K程度

17

Results: Column density vs Viewing angle

- CO → H₂, Cl → HIと分布が似ていることが分かる。ALMAを用いた構造探査に期待。
- Meijerink & Spaans 05のXDRモデルを利用している点に注意。

Comparison with the Circinus galaxy: IR-SED

- SN-feedbackのおかげでmol. gasのscale heightが上がり、高温ダスト放射を隠す。
- 過去の研究同様に、bipolar outflowがdust emissionのpolar elongationを作り出している。

まとめ

- 近年の観測技術の進展に伴い、古典的なトーラスモデルでは説明のできない現象が近傍AGNで発見されている。
- モデルの峻別には力学情報を加味することも必須。
- 力学的情報も含めた、self-consistentなモデル構築と観測との綿密な比較 が重要!
- 一例として、Wada et al.による一連の仕事を紹介。
- 現状、モデル結果は観測を"かなりよく再現"
 - → fountainの存在の証明など、ALMA観測への期待がかかる。
 - → Chemistryも考慮して、望みの構造をtraceするのに適したlineを判断。