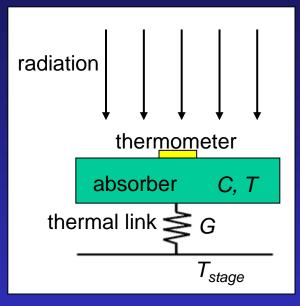
ASTE: THE ATACAMA SUBMILLIMETER TELESCOPE EXPERIMENT

Kotaro Kohno (U. of Tokyo) Tai Oshima (NRO/NAOJ)

Bolometer Camera Development

Multi Color Bolometer Camera

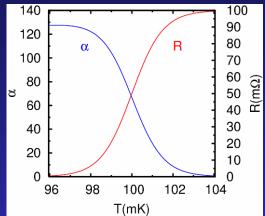
Phase	1	II	III
When	2010/10	2011/6	2012/6
Bands	2	2	2
Frequency	270/350GHz	270/350GHz	350/650GHz
Wavelength	1.1mm/850µm	1.1mm/850µm	850μm/450μm
Pixels	169/271	169/271	271/881
Beam(FWHM)	28/22"	28/22"	22"/11"
Field of View(')	7.5	7.5	7.5
NEFD(mJy/√s)	10/35	10/35	35/80
Options			more bands?(O'Brient+2009)


What is a Bolometer?

• Measures radiation power as temperature rise

- 1. Power input to absorber
- 2. Temperature rise $\propto 1/G$ measured by thermometer
- 3. Readout as electrical signal

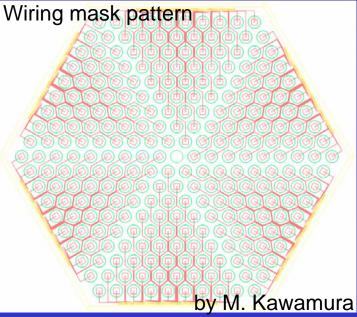
• → Low temperature detector


- Typically T < 0.5K
- Thermometer types
 - Semiconductor
 - Transition edge Sensor (TES)
- Figure of merit: Noise equivalent Power
 - − Thermal fluctuation (phonon) noise NEP~ $(4k_BT^2G)^{1/2}$ [W/√Hz]
 - Photon noise
 NEP~ (P_{opt}hv)^{1/2} [W/√Hz]

TES bolometer array

TES bolometer

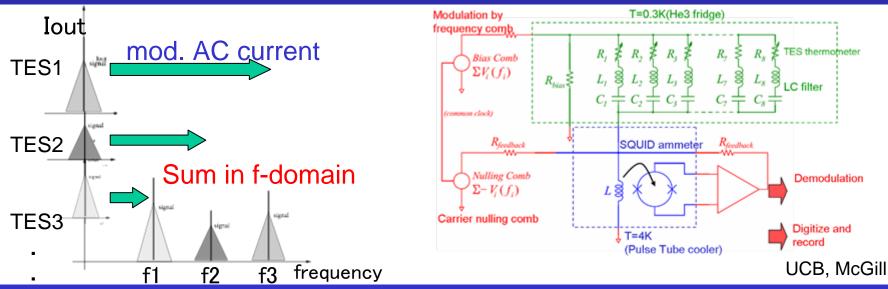
- TES: Utilize rapid resistance change in superconducting normal state transition
- High sensitivity and fast response
- High yield based on micromachining technique
- Multiplexable
- ➔ Large & sensitive array
- Low vibration sensitivity
 → use of mechanical cooler
- No more cryogens! + remote operation capable



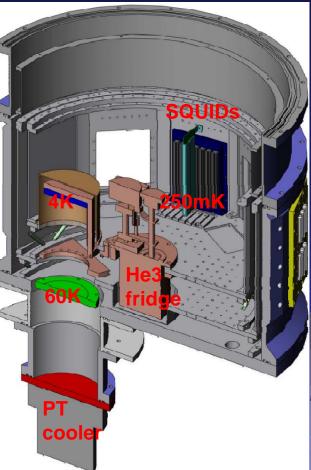
• Array design based on SPT spider web type absorber (UCB et al.)

Coupling to optics

- conical horn array
- resonance cavity
- Bolometer NEP(expected)
 - 60aW/√Hz @ 270GHz
 - 70aW/√Hz @ 350GHz
 - 100aW/√Hz @ 650GHz
 - → Background limited (BLIP)

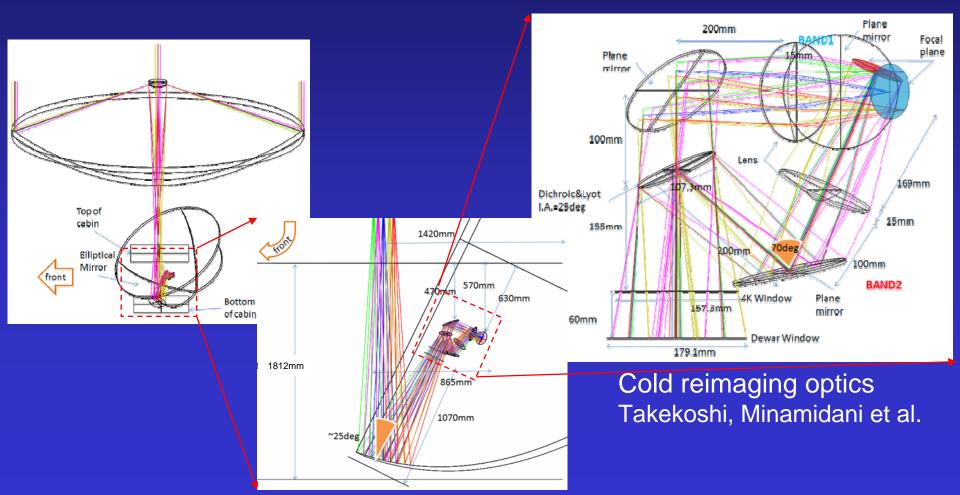


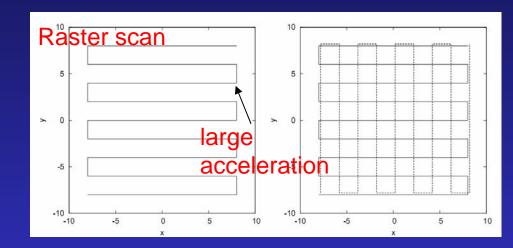
Multiplexed Readout

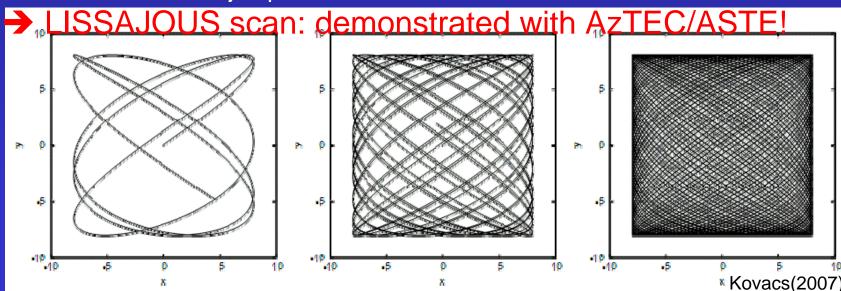

- Very low noise SQUIDs as ammeter
- Frequency Domain Multiplexing (fMUX)
 - method
 - 1. TES modulation with AC current (~100kHz band per TES)
 - 2. Summation of modulated signals in frequency domain
 - 3. Demodulation
 - No extra power dissipation at ultra low temperature stage
 - Higher resistance to microphonics
- FPGA based Digital fMUX developed by McGIII, UCB
 - Compact
 - Low power consumption
 - Stable operation

➔ suitable for remote operation with ASTE

Cryogenics


- Pulse Tube cooler
 - T=3.5K, 60K
 - Cooling power 1.0W@4K
 - $-\frac{1}{2}$ day to 4K
 - very low vibration
- He3 sorption cooler
 - precooled by
 He4 sorption cooler
 - T=250mK ultracold stage
 - T=350mK buffer stage
 - Hold time 50hr@no load
 - -Cycle time < 4hrs


Optics


- Very compact dichroic optics design
- Two color optics enclosed in 60cm cube
- → upgradable to wide band multi-chroic bolometers

Scan observation

- Target region not fully covered with a glance
 - → scan observation for nice maps!
- requirements
 - Low overhead
 - low acceleration
 - Resistance to noise
 - e.g. 1/f noise
 - Feasibility
 - You can't jump around!

